cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A281425 a(n) = [q^n] (1 - q)^n / Product_{j=1..n} (1 - q^j).

Original entry on oeis.org

1, 0, 1, -1, 2, -4, 9, -21, 49, -112, 249, -539, 1143, -2396, 5013, -10550, 22420, -48086, 103703, -223806, 481388, -1029507, 2187944, -4625058, 9742223, -20490753, 43111808, -90840465, 191773014, -405523635, 858378825, -1817304609, 3845492204, -8129023694, 17162802918, -36191083386
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2017

Keywords

Comments

a(n) is n-th term of the Euler transform of -n + 1, 1, 1, 1, ...
Inverse zero-based binomial transform of A000041. The version for strict partitions is A380412, or A293467 up to sign. - Gus Wiseman, Feb 06 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0,
          combinat[numbpart](n), b(n, k-1)-b(n-1, k-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 21 2024
  • Mathematica
    Table[SeriesCoefficient[(1 - q)^n / Product[(1 - q^j), {j, 1, n}], {q, 0, n}], {n, 0, 35}]
    Table[SeriesCoefficient[(1 - q)^n QPochhammer[q^(1 + n), q]/QPochhammer[q, q], {q, 0, n}], {n, 0, 35}]
    Table[SeriesCoefficient[1/QFactorial[n, q], {q, 0, n}], {n, 0, 35}]
    Table[Differences[PartitionsP[Range[0, n]], n], {n, 0, 35}] // Flatten
    Table[Sum[(-1)^j*Binomial[n, j]*PartitionsP[n-j], {j, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 06 2017 *)

Formula

a(n) = [q^n] 1/((1 + q)*(1 + q + q^2)*...*(1 + q + ... + q^(n-1))).
a(n) = Sum_{j=0..n} (-1)^j * binomial(n, j) * A000041(n-j). - Vaclav Kotesovec, Oct 06 2017
a(n) ~ (-1)^n * 2^(n - 3/2) * exp(Pi*sqrt(n/12) + Pi^2/96) / (sqrt(3)*n). - Vaclav Kotesovec, May 07 2018

A275639 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=5.

Original entry on oeis.org

1, -4, 7, -7, 5, -4, 4, -4, 5, -7, 8, -8, 9, -11, 12, -11, 9, -8, 9, -11, 13, -15, 16, -15, 14, -15, 16, -15, 14, -15, 17, -19, 21, -22, 21, -19, 18, -19, 21, -22, 22, -23, 25, -26, 26, -26, 25, -23, 23, -26, 29, -30, 30, -30, 30, -30, 30, -30, 30, -30, 31, -34, 37, -37, 35, -34, 34, -34, 35
Offset: 0

Views

Author

N. J. A. Sloane, Aug 09 2016

Keywords

Crossrefs

Cf. A275638.

Programs

  • PARI
    Vec(1/((1+x)^2*(1+x^2)*(1+x+x^2)*(1+x+x^2+x^3+x^4)) + O(x^100)) \\ Colin Barker, Aug 11 2016

Formula

Equivalent g.f.: 1 / ((1+x)^2*(1+x^2)*(1+x+x^2)*(1+x+x^2+x^3+x^4)). - Colin Barker, Aug 10 2016
a(n) = -4*a(n-1) - 9*a(n-2) - 15*a(n-3) - 20*a(n-4) - 22*a(n-5) - 20*a(n-6) - 15*a(n-7) - 9*a(n-8) - 4*a(n-9) - a(n-10). - Ilya Gutkovskiy, Aug 10 2016

A275640 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=6.

Original entry on oeis.org

1, -5, 11, -14, 12, -9, 9, -13, 20, -26, 27, -25, 26, -33, 43, -49, 47, -42, 43, -53, 67, -77, 78, -73, 72, -82, 98, -108, 107, -102, 104, -118, 138, -151, 150, -142, 141, -155, 178, -194, 194, -187, 189, -206, 230, -246, 245, -235, 235, -255, 285, -305, 305, -295, 295, -315, 345, -365, 365
Offset: 0

Views

Author

N. J. A. Sloane, Aug 09 2016

Keywords

Crossrefs

Cf. A275638.

Programs

  • Mathematica
    CoefficientList[Series[1/((1+x)^3(1-x+x^2)(1+x^2)(1+x+x^2)^2(1+ x+x^2+ x^3+x^4)),{x,0,100}],x] (* or *) LinearRecurrence[{-5,-14,-29,-49,-71,-90,-101,-101,-90,-71,-49,-29,-14,-5,-1},{1,-5,11,-14,12,-9,9,-13,20,-26,27,-25,26,-33,43},100] (* Harvey P. Dale, Mar 14 2023 *)

Formula

Equivalent g.f.: 1 / ((1+x)^3*(1-x+x^2)*(1+x^2)*(1+x+x^2)^2*(1+x+x^2+x^3+x^4)). - Colin Barker, Aug 10 2016

A275641 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=7.

Original entry on oeis.org

1, -6, 16, -25, 26, -21, 18, -21, 27, -30, 28, -26, 30, -41, 55, -65, 66, -61, 59, -66, 79, -89, 90, -85, 84, -95, 114, -127, 126, -119, 121, -138, 161, -175, 174, -166, 164, -175, 195, -211, 213, -207, 210, -231, 261, -281, 280, -267, 263, -280, 309, -329, 329, -320, 323, -347, 380, -401, 401
Offset: 0

Views

Author

N. J. A. Sloane, Aug 09 2016

Keywords

Crossrefs

Cf. A275638.

Programs

  • Mathematica
     CoefficientList[Series[1/((1 + x)^3 (1 - x + x^2) (1 + x^2)(1 + x + x^2)^2 (1 + x + x^2 + x^3 + x^4) (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)), {x, 0, 80}], x] (* Vincenzo Librandi, Feb 04 2017 *)
  • PARI
    Vec(1/((1+x)^3*(1-x+x^2)*(1+x^2)*(1+x+x^2)^2*(1+x+x^2+x^3+x^4)*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^100)) \\ Colin Barker, Aug 11 2016

Formula

An equivalent but more complicated g.f.: 1 / ((1+x)^3*(1-x+x^2)*(1+x^2)*(1+x+x^2)^2*(1+x+x^2+x^3+x^4)*(1+x+x^2+x^3+x^4+x^5+x^6)). - Colin Barker, Aug 10 2016

A275642 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=8.

Original entry on oeis.org

1, -7, 22, -41, 51, -47, 39, -39, 49, -64, 80, -95, 107, -118, 135, -159, 180, -191, 200, -220, 252, -286, 314, -334, 349, -370, 409, -461, 505, -531, 554, -593, 648, -706, 758, -801, 835, -870, 924, -999, 1072, -1126, 1175, -1242, 1327, -1412, 1485, -1546, 1602, -1669, 1764, -1880, 1985, -2061
Offset: 0

Views

Author

N. J. A. Sloane, Aug 09 2016

Keywords

Crossrefs

Cf. A275638.

A275643 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=12.

Original entry on oeis.org

1, -11, 56, -175, 376, -592, 719, -722, 678, -696, 815, -988, 1143, -1254, 1374, -1602, 1986, -2440, 2794, -2971, 3095, -3378, 3906, -4562, 5147, -5568, 5937, -6487, 7336, -8317, 9111, -9601, 10048, -10852, 12146, -13656, 14954, -15853, 16601, -17692, 19402, -21465, 23298, -24631, 25843, -27577
Offset: 0

Views

Author

N. J. A. Sloane, Aug 09 2016

Keywords

Crossrefs

Cf. A275638.

A275644 Expansion of (1-q)^k/Product_{j=1..k} (1-q^j) for k=16.

Original entry on oeis.org

1, -15, 106, -469, 1457, -3381, 6099, -8829, 10624, -11208, 11274, -11858, 13447, -15709, 18001, -20090, 22420, -25667, 29965, -34627, 38835, -42687, 47352, -53944, 62270, -70875, 78399, -84913, 91988, -101370, 113336, -126336, 138584, -150174, 163347, -180341, 200990, -222634, 242515
Offset: 0

Views

Author

N. J. A. Sloane, Aug 09 2016

Keywords

Crossrefs

Cf. A275638.
Showing 1-7 of 7 results.