A124059
Number of connected asymmetric graphs with n nodes.
Original entry on oeis.org
1, 0, 0, 0, 0, 8, 144, 3552, 131452, 7840396, 797524380, 143325597564
Offset: 1
- C. O. Aguilar and B. Gharesifard, Graph Controllability Classes for the Laplacian Leader-Follower Dynamics, 2014. See Table 1.
- Ernesto Estrada, Communicability cosine distance: similarity and symmetry in graphs/networks, hal-04169459 [math], 2023. See p. 22.
- N. J. A. Sloane, Transforms
- Yoav Spector, Moshe Schwartz, Study of potential Hamiltonians for quantum graphity, arXiv:1808.05632 [cond-mat.stat-mech], 2018.
- Eric Weisstein's World of Mathematics, Graph Automorphism
- Eric Weisstein's World of Mathematics, Identity Graph
- Myung-Gon Yoon, Peter Rowlinson, Dragos Cvetkovic, and Zoran Stanic, Controllability of multi-agent dynamical systems with a broadcasting control signal, Asian J. Control 16 (4) (2014) 1066-1072, Table 1
Cf.
A003400 (not-necessarily connected simple asymmetric graphs).
Cf.
A275867 (disconnected simple asymmetric graphs).
Cf. Values of |Aut(g)| for simple connected graphs,
A124059,
A241454,
A241455,
A241456,
A241457,
A241458,
A241459,
A241460,
A241461,
A241462,
A241463,
A241464,
A241465,
A241466,
A241467,
A241468,
A241469,
A241470,
A241471.
A003400
Number of asymmetric (not necessarily connected) graphs with n nodes.
Original entry on oeis.org
1, 0, 0, 0, 0, 8, 152, 3696, 135004, 7971848, 805364776, 144123121972
Offset: 1
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 220, Section P3.4.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Klaus Brockhaus, The 6-node asymmetric graphs
- Zoran Maksimovic, Number of graphs on n nodes whose automorphism group orders are k, n<=11
- Yoav Spector, Moshe Schwartz, Study of potential Hamiltonians for quantum graphity, arXiv:1808.05632 [cond-mat.stat-mech], 2018.
- Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
- Eric Weisstein's World of Mathematics, Graph Automorphism
- Eric Weisstein's World of Mathematics, Identity Graph
Cf.
A124059 (connected simple asymmetric graphs).
Cf.
A275867 (disconnected simple asymmetric graphs).
Showing 1-2 of 2 results.
Comments