cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A328576 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j), where f(0) = 0 and for n > 0, f(n) = [A276088(n), A328575(n)], for all i, j.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 4, 3, 5, 5, 5, 6, 7, 8, 9, 9, 9, 10, 11, 12, 13, 13, 13, 14, 15, 2, 2, 2, 2, 3, 4, 2, 2, 2, 2, 3, 4, 3, 5, 5, 5, 6, 7, 8, 9, 9, 9, 10, 11, 12, 13, 13, 13, 14, 15, 3, 16, 16, 16, 17, 18, 16, 16, 16, 16, 17, 18, 17, 19, 19, 19, 20, 21, 22, 23, 23, 23, 24, 25, 26, 27, 27, 27, 28, 29, 30, 31, 31, 31, 32, 33, 31, 31, 31, 31, 32, 33
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Comments

Restricted growth sequence transform of function f, defined as: f(0) = 0 and for n > 0, f(n) = [A276088(n), A328575(n)].
For all i, j: a(i) = a(j) => A328114(i) = A328114(j).

Crossrefs

Programs

  • PARI
    up_to = 32768;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A276088(n) = { my(e=0, p=2); while(n && !(e=(n%p)), n = n/p; p = nextprime(1+p)); (e); };
    A328575(n) = A003557(A032742(A276086(n)));
    Aux328576(n) = if(!n,n,[A276088(n), A328575(n)]);
    v328576 = rgs_transform(vector(1+up_to, n, Aux328576(n-1)));
    A328576(n) = v328576[1+n];

A276086 Primorial base exp-function: digits in primorial base representation of n become the exponents of successive prime factors whose product a(n) is.

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 5, 10, 15, 30, 45, 90, 25, 50, 75, 150, 225, 450, 125, 250, 375, 750, 1125, 2250, 625, 1250, 1875, 3750, 5625, 11250, 7, 14, 21, 42, 63, 126, 35, 70, 105, 210, 315, 630, 175, 350, 525, 1050, 1575, 3150, 875, 1750, 2625, 5250, 7875, 15750, 4375, 8750, 13125, 26250, 39375, 78750, 49, 98, 147, 294, 441, 882, 245, 490, 735, 1470, 2205, 4410, 1225, 2450
Offset: 0

Views

Author

Antti Karttunen, Aug 21 2016

Keywords

Comments

Prime product form of primorial base expansion of n.
Sequence is a permutation of A048103. It maps the smallest prime not dividing n to the smallest prime dividing n, that is, A020639(a(n)) = A053669(n) holds for all n >= 1.
The sequence satisfies the exponential function identity, a(x + y) = a(x) * a(y), whenever A329041(x,y) = 1, that is, when adding x and y together will not generate any carries in the primorial base. Examples of such pairs of x and y are A328841(n) & A328842(n), and also A328770(n) (when added with itself). - Antti Karttunen, Oct 31 2019
From Antti Karttunen, Feb 18 2022: (Start)
The conjecture given in A327969 asks whether applying this function together with the arithmetic derivative (A003415) in some combination or another can eventually transform every positive integer into zero.
Another related open question asks whether there are any other numbers than n=6 such that when starting from that n and by iterating with A003415, one eventually reaches a(n). See comments in A351088.
This sequence is used in A351255 to list the terms of A099308 in a different order, by the increasing exponents of the successive primes in their prime factorization. (End)
From Bill McEachen, Oct 15 2022: (Start)
From inspection, the least significant decimal digits of a(n) terms form continuous chains of 30 as follows. For n == i (mod 30), i=0..5, there are 6 ordered elements of these 8 {1,2,3,6,9,8,7,4}. Then for n == i (mod 30), i=6..29, there are 12 repeated pairs = {5,0}.
Moreover, when the individual elements of any of the possible groups of 6 are transformed via (7*digit) (mod 10), the result matches one of the other 7 groupings (not all 7 may be seen). As example, {1,2,3,6,9,8} transforms to {7,4,1,2,3,6}. (End)
The least significant digit of a(n) in base 4 is given by A353486, and in base 6 by A358840. - Antti Karttunen, Oct 25 2022, Feb 17 2024

Examples

			For n = 24, which has primorial base representation (see A049345) "400" as 24 = 4*A002110(2) + 0*A002110(1) + 0*A002110(0) = 4*6 + 0*2 + 0*1, thus a(24) = prime(3)^4 * prime(2)^0 * prime(1)^0 = 5^4 = 625.
For n = 35 = "1021" as 35 = 1*A002110(3) + 0*A002110(2) + 2*A002110(1) + 1*A002110(0) = 1*30 + 0*6 + 2*2 + 1*1, thus a(35) = prime(4)^1 * prime(2)^2 * prime(1) = 7 * 3*3 * 2 = 126.
		

Crossrefs

Cf. A276085 (a left inverse) and also A276087, A328403.
Cf. A048103 (terms sorted into ascending order), A100716 (natural numbers not present in this sequence).
Cf. A278226 (associated filter-sequence), A286626 (and its rgs-version), A328477.
Cf. A328316 (iterates started from zero).
Cf. A327858, A327859, A327860, A327963, A328097, A328098, A328099, A328110, A328112, A328382 for various combinations with arithmetic derivative (A003415).
Cf. also A327167, A329037.
Cf. A019565 and A054842 for base-2 and base-10 analogs and A276076 for the analogous "factorial base exp-function", from which this differs for the first time at n=24, where a(24)=625 while A276076(24)=7.
Cf. A327969, A351088, A351458 for sequences with conjectures involving this sequence.

Programs

  • Mathematica
    b = MixedRadix[Reverse@ Prime@ Range@ 12]; Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 51}] (* Michael De Vlieger, Aug 23 2016, Version 10.2 *)
    f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ f@ n], {n, 0, 73}] (* Michael De Vlieger, Aug 30 2016, Pre-Version 10 *)
    a[n0_] := Module[{m = 1, i = 1, n = n0, p}, While[n > 0, p = Prime[i]; m *= p^Mod[n, p]; n = Quotient[n, p]; i++]; m];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 01 2021, after Antti Karttunen's Sage code *)
  • PARI
    A276086(n) = { my(i=0,m=1,pr=1,nextpr); while((n>0),i=i+1; nextpr = prime(i)*pr; if((n%nextpr),m*=(prime(i)^((n%nextpr)/pr));n-=(n%nextpr));pr=nextpr); m; }; \\ Antti Karttunen, May 12 2017
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; \\ (Better than above one, avoids unnecessary construction of primorials). - Antti Karttunen, Oct 14 2019
    
  • Python
    from sympy import prime
    def a(n):
        i=0
        m=pr=1
        while n>0:
            i+=1
            N=prime(i)*pr
            if n%N!=0:
                m*=(prime(i)**((n%N)/pr))
                n-=n%N
            pr=N
        return m # Indranil Ghosh, May 12 2017, after Antti Karttunen's PARI code
    
  • Python
    from sympy import nextprime
    def a(n):
        m, p = 1, 2
        while n > 0:
            n, r = divmod(n, p)
            m *= p**r
            p = nextprime(p)
        return m
    print([a(n) for n in range(74)])  # Peter Luschny, Apr 20 2024
  • Sage
    def A276086(n):
        m=1
        i=1
        while n>0:
            p = sloane.A000040(i)
            m *= (p**(n%p))
            n = floor(n/p)
            i += 1
        return (m)
    # Antti Karttunen, Oct 14 2019, after Indranil Ghosh's Python code above, and my own leaner PARI code from Oct 14 2019. This avoids unnecessary construction of primorials.
    
  • Scheme
    (define (A276086 n) (let loop ((n n) (t 1) (i 1)) (if (zero? n) t (let* ((p (A000040 i)) (d (modulo n p))) (loop (/ (- n d) p) (* t (expt p d)) (+ 1 i))))))
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (expt (A053669 n) (A276088 n)) (A276086 (A276093 n))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    
  • Scheme
    (definec (A276086 n) (if (zero? n) 1 (* (A053669 n) (A276086 (- n (A002110 (A276084 n))))))) ;; Needs macro definec from http://oeis.org/wiki/Memoization#Scheme
    

Formula

a(0) = 1; for n >= 1, a(n) = A053669(n) * a(A276151(n)) = A053669(n) * a(n-A002110(A276084(n))).
a(0) = 1; for n >= 1, a(n) = A053669(n)^A276088(n) * a(A276093(n)).
a(n) = A328841(a(n)) + A328842(a(n)) = A328843(n) + A328844(n).
a(n) = a(A328841(n)) * a(A328842(n)) = A328571(n) * A328572(n).
a(n) = A328475(n) * A328580(n) = A328476(n) + A328580(n).
a(A002110(n)) = A000040(n+1). [Maps primorials to primes]
a(A143293(n)) = A002110(n+1). [Maps partial sums of primorials to primorials]
a(A057588(n)) = A276092(n).
a(A276156(n)) = A019565(n).
a(A283477(n)) = A324289(n).
a(A003415(n)) = A327859(n).
Here the text in brackets shows how the right hand side sequence is a function of the primorial base expansion of n:
A001221(a(n)) = A267263(n). [Number of nonzero digits]
A001222(a(n)) = A276150(n). [Sum of digits]
A067029(a(n)) = A276088(n). [The least significant nonzero digit]
A071178(a(n)) = A276153(n). [The most significant digit]
A061395(a(n)) = A235224(n). [Number of significant digits]
A051903(a(n)) = A328114(n). [Largest digit]
A055396(a(n)) = A257993(n). [Number of trailing zeros + 1]
A257993(a(n)) = A328570(n). [Index of the least significant zero digit]
A079067(a(n)) = A328620(n). [Number of nonleading zeros]
A056169(a(n)) = A328614(n). [Number of 1-digits]
A056170(a(n)) = A328615(n). [Number of digits larger than 1]
A277885(a(n)) = A328828(n). [Index of the least significant digit > 1]
A134193(a(n)) = A329028(n). [The least missing nonzero digit]
A005361(a(n)) = A328581(n). [Product of nonzero digits]
A072411(a(n)) = A328582(n). [LCM of nonzero digits]
A001055(a(n)) = A317836(n). [Number of carry-free partitions of n in primorial base]
Various number theoretical functions applied:
A000005(a(n)) = A324655(n). [Number of divisors of a(n)]
A000203(a(n)) = A324653(n). [Sum of divisors of a(n)]
A000010(a(n)) = A324650(n). [Euler phi applied to a(n)]
A023900(a(n)) = A328583(n). [Dirichlet inverse of Euler phi applied to a(n)]
A069359(a(n)) = A329029(n). [Sum a(n)/p over primes p dividing a(n)]
A003415(a(n)) = A327860(n). [Arithmetic derivative of a(n)]
Other identities:
A276085(a(n)) = n. [A276085 is a left inverse]
A020639(a(n)) = A053669(n). [The smallest prime not dividing n -> the smallest prime dividing n]
A046523(a(n)) = A278226(n). [Least number with the same prime signature as a(n)]
A246277(a(n)) = A329038(n).
A181819(a(n)) = A328835(n).
A053669(a(n)) = A326810(n), A326810(a(n)) = A328579(n).
A257993(a(n)) = A328570(n), A328570(a(n)) = A328578(n).
A328613(a(n)) = A328763(n), A328620(a(n)) = A328766(n).
A328828(a(n)) = A328829(n).
A053589(a(n)) = A328580(n). [Greatest primorial number which divides a(n)]
A276151(a(n)) = A328476(n). [... and that primorial subtracted from a(n)]
A111701(a(n)) = A328475(n).
A328114(a(n)) = A328389(n). [Greatest digit of primorial base expansion of a(n)]
A328389(a(n)) = A328394(n), A328394(a(n)) = A328398(n).
A235224(a(n)) = A328404(n), A328405(a(n)) = A328406(n).
a(A328625(n)) = A328624(n), a(A328626(n)) = A328627(n). ["Twisted" variants]
a(A108951(n)) = A324886(n).
a(n) mod n = A328386(n).
a(a(n)) = A276087(n), a(a(a(n))) = A328403(n). [2- and 3-fold applications]
a(2n+1) = 2 * a(2n). - Antti Karttunen, Feb 17 2022

Extensions

Name edited and new link-formulas added by Antti Karttunen, Oct 29 2019
Name changed again by Antti Karttunen, Feb 05 2022

A108951 Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
Offset: 1

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015

Examples

			a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    a(n)=my(f=factor(n)); prod(i=1,#f~, primorial(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import primerange, factorint
    from operator import mul
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    def p(f):
        return sharp_primorial(f[0])^f[1]
    [prod(p(f) for f in factor(n)) for n in range (1,51)]
    # Giuseppe Coppoletta, Feb 07 2015
    

Formula

Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]
a(n) = A181812(A048673(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
A071178(a(n)) = A071178(n). [And also its exponent.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
a(A307035(n)) = A000142(n).
a(A003418(n)) = A181814(n).
a(A025487(n)) = A181817(n).
a(A181820(n)) = A181822(n).
a(A019565(n)) = A283477(n).
A001221(a(n)) = A061395(n).
A001222(a(n)) = A056239(n).
A181819(a(n)) = A122111(n).
A124859(a(n)) = A181821(n).
A085082(a(n)) = A238690(n).
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)
A005361(a(n)) = A329382(n). (product of exponents of prime factors)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A000005(a(n)) = A329605(n). (number of divisors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A324580(a(n)) = A324887(n).
A276150(a(n)) = A324888(n). (digit sum in primorial base)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A243055(a(n)) = A329343(n).
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
A328114(a(n)) = A329344(n). (maximal digit in primorial base)
A062977(a(n)) = A325226(n).
A097248(a(n)) = A283478(n).
A324895(a(n)) = A324896(n).
A324655(a(n)) = A329046(n).
A327860(a(n)) = A329047(n).
A329601(a(n)) = A329607(n).
(End)
a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019
From Antti Karttunen, Jul 09 2021: (Start)
a(n) = A346092(n) + A346093(n).
a(n) = A346108(n) - A346109(n).
a(A342012(n)) = A004490(n).
a(A337478(n)) = A336389(n).
A336835(a(n)) = A337474(n).
A342002(a(n)) = A342920(n).
A328571(a(n)) = A346091(n).
A328572(a(n)) = A344592(n).
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022

Extensions

More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020

A329348 The least significant nonzero digit in the primorial base expansion of primorial inflation of n, A108951(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 6, 2, 1, 2, 1, 4, 6, 2, 1, 3, 2, 2, 1, 4, 1, 5, 1, 1, 6, 2, 8, 4, 1, 2, 6, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 4, 6, 4, 1, 2, 4, 8, 6, 2, 1, 3, 1, 2, 3, 2, 13, 12, 1, 4, 6, 5, 1, 3, 1, 2, 5, 4, 2, 12, 1, 2, 1, 2, 1, 2, 11, 2, 6, 8, 1, 2, 6, 4, 6, 2, 7, 2, 1, 2, 10, 1, 1, 12, 1, 8, 4
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2019

Keywords

Comments

Number of occurrences of the least primorial present in the greedy sum of primorials adding to A108951(n).
The greedy sum is also the sum with the minimal number of primorials, used for example in the primorial base representation.

Examples

			For n = 24 = 2^3 * 3, A108951(24) = A034386(2)^3 * A034386(3) = 2^3 * 6 = 48 = 1*30 + 3*6, and as the factor of the least primorial in the sum is 3, we have a(24) = 3.
		

Crossrefs

Programs

Formula

a(n) = A067029(A324886(n)) = A276088(A108951(n)).
a(n) <= A324888(n).
From Antti Karttunen, Jan 15-17 2020: (Start)
a(n) = A331188(n) mod A117366(n).
a(n) = A001511(A246277(A324886(n))).
(End)

Extensions

Name changed by Antti Karttunen, Jan 17 2020

A329029 a(n) = A069359(A276086(n)), where A276086 is the primorial base exp-function and A069359(n) = n * Sum_{p|n} 1/p.

Original entry on oeis.org

0, 1, 1, 5, 3, 15, 1, 7, 8, 31, 24, 93, 5, 35, 40, 155, 120, 465, 25, 175, 200, 775, 600, 2325, 125, 875, 1000, 3875, 3000, 11625, 1, 9, 10, 41, 30, 123, 12, 59, 71, 247, 213, 741, 60, 295, 355, 1235, 1065, 3705, 300, 1475, 1775, 6175, 5325, 18525, 1500, 7375, 8875, 30875, 26625, 92625, 7, 63, 70, 287, 210, 861, 84, 413, 497, 1729
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2019

Keywords

Comments

A380535 gives the indices n where a(n) is a multiple of A053669(n). This can be seen from the formula a(n) = A003557(A276086(n)) * A069359(A328571(n)). The left hand side of the product is a multiple of A053669(n) if and only if A276088(n) > 1, while the right hand side is never a multiple of A053669(n), as it is equal to A329031(n) = A003415(A007947(A276086(n))). - Antti Karttunen, Feb 11 2025

Crossrefs

Coincides with A327860 on the positions given by A276156.

Programs

  • PARI
    A329029(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); if(e, m *= (p^e); s += (1/p)); n = n\p; p = nextprime(1+p)); (s*m); };
    
  • PARI
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A069359(n) = (n*sumdiv(n, d, isprime(d)/d));
    A329029(n) = A069359(A276086(n));

Formula

a(n) = A069359(A276086(n)).
a(n) = A328572(n) * A329031(n) = A003557(A276086(n)) * A069359(A328571(n)). - Antti Karttunen, Feb 11 2025

A328570 Index of the least significant zero digit in the primorial base expansion of n, when the rightmost digit is in the position 1.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 1, 4, 1, 4, 1, 2, 1, 3, 1, 3, 1, 2, 1, 5, 1, 5, 1, 2, 1, 5, 1, 5, 1, 2, 1, 5, 1, 5, 1, 2, 1, 5, 1, 5, 1, 2, 1, 3, 1, 3, 1, 2, 1, 5, 1, 5, 1, 2, 1, 5, 1, 5, 1, 2, 1, 5, 1, 5, 1, 2, 1, 5, 1, 5, 1, 2, 1, 3, 1, 3, 1, 2, 1, 5, 1, 5, 1, 2, 1, 5
Offset: 0

Views

Author

Antti Karttunen, Oct 20 2019

Keywords

Comments

Index of the least prime not dividing A276086(n), where A276086 converts the primorial base expansion of n into its prime product form.
Starting from x = n, repeatedly divide x by prime(1) (discarding the remainder), and set x to the integer quotient floor(x/prime(1)), then divide x with prime(2) (again discarding the remainder, and setting x to the integer quotient), etc., stopping as soon one of the primes is a divisor of the previous integer quotient (leaving zero remainder). a(n) is then the index of that prime, equal to 1 + the number of iterations done.

Examples

			For n = 2, we divide it with A000040(1) = 2, and it leaves zero remainder, so we have finished on the first round (needing no actual iterations), and thus a(2) = 1. Note that 2 in primorial base (A049345) is written as "10", and indeed the first zero from the right occurs at the position 1.
For n = 5, we first divide 5 with prime(1) = 2, and discarding the remainder, we are left with floor(5/2) = 2. Then we divide that 2 with prime(2) = 3, leaving floor(2/3) = 0 and remainder 2. And finally we divide 0 with prime(3) = 5, and that doesn't leave any remainder, thus we are finished on the third round, and a(5) = 3. Note that 5 in primorial base is written as "21", and allowing here a leading zero, written as "021", we see that it is in this case the least significant zero occurring at position 3 from the right.
For n = 43, we first divide it with prime(1) = 2, leaving a remainder 1 and integer quotient 21. Then we divide 21 with prime(2) = 3, which doesn't leave any remainder, thus we are finished on the second round, and a(43) = 2. Note that 43 is written as "1201" in primorial base, with the least significant zero occurring in the position 2.
		

Crossrefs

Programs

  • PARI
    A328570(n) = { my(i=1, p=2); while(n && (n%p), i++; n = n\p; p = nextprime(1+p)); (i); };

Formula

a(n) = A000720(A326810(n)) = A257993(A276086(n)) = A055396(A276087(n)).
For all n >= 0, A002110(a(n)) = A328580(n), a(A276086(n)) = A328578(n).
For all odd n, A000040(a(n)) = A326810(n) > A276088(n).
For all n >= 0, A276086(n)/A002110(a(n)-1) = A328475(n) and A276086(n)-A002110(a(n)-1) = A328476(n).

A277022 Primorial base representation of n is rewritten as a base-2 number with each nonzero digit k replaced by a run of k 1's (followed by one extra zero if not the rightmost run of 1's) and with each 0 kept as 0.

Original entry on oeis.org

0, 1, 2, 5, 6, 13, 4, 9, 10, 21, 22, 45, 12, 25, 26, 53, 54, 109, 28, 57, 58, 117, 118, 237, 60, 121, 122, 245, 246, 493, 8, 17, 18, 37, 38, 77, 20, 41, 42, 85, 86, 173, 44, 89, 90, 181, 182, 365, 92, 185, 186, 373, 374, 749, 188, 377, 378, 757, 758, 1517, 24, 49, 50, 101, 102, 205, 52, 105, 106, 213, 214, 429, 108, 217, 218, 437, 438, 877, 220
Offset: 0

Views

Author

Antti Karttunen, Sep 26 2016

Keywords

Examples

			9 = "111" in primorial base (A002110(0) + A002110(1) + A002110(2) = 9) is converted to three 1-bits, with separating zeros, in binary as "10101" = A007088(21), thus a(9) = 21.
91 = "3001" in primorial base (91 = 3*A002110(3) + A002110(0)) is converted to binary number "1110001" = A007088(113), thus a(91) = 113. Note how two of the zeros come from the primorial base representation and the third zero is an extra separating zero inserted after each run of 1-bits apart from the rightmost 1-run.
120 = "4000" in primorial base (120 = 4*A002110(3)) is converted to the binary number "1111000" = A007088(120), thus a(120) = 120.
		

Crossrefs

Cf. A277018 (terms sorted into ascending order).
Cf. A277021 (a left inverse).
Differs from analogous A277012 for the first time at n=24, where a(24) = 60, while A277012(24) = 8.

Formula

a(0) = 0; for n >= 1, a(n) = A000225(A276088(n))*A000079(A276084(n)) + A000079(A276088(n))*a(A276093(n)).
a(n) = A156552(A276086(n)).
Other identities. For all n >= 0:
A277021(a(n)) = n.
A005940(1+a(n)) = A276086(n).
A000035(a(n)) = A000035(n). [Preserves the parity of n.]
A000120(a(n)) = A276150(n).
A069010(a(n)) = A267263(n).

A326810 The smallest prime that does not divide the prime product form (A276086) of the primorial base expansion of n.

Original entry on oeis.org

2, 3, 2, 5, 2, 5, 2, 3, 2, 7, 2, 7, 2, 3, 2, 7, 2, 7, 2, 3, 2, 7, 2, 7, 2, 3, 2, 7, 2, 7, 2, 3, 2, 5, 2, 5, 2, 3, 2, 11, 2, 11, 2, 3, 2, 11, 2, 11, 2, 3, 2, 11, 2, 11, 2, 3, 2, 11, 2, 11, 2, 3, 2, 5, 2, 5, 2, 3, 2, 11, 2, 11, 2, 3, 2, 11, 2, 11, 2, 3, 2, 11, 2, 11, 2, 3, 2, 11, 2, 11, 2, 3, 2, 5, 2, 5, 2, 3, 2, 11, 2, 11, 2, 3, 2, 11
Offset: 0

Views

Author

Antti Karttunen, Oct 19 2019

Keywords

Crossrefs

Programs

  • Mathematica
    With[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Table[Block[{p = 2}, While[Mod[#, p] == 0, p = NextPrime@ p]; p] &@ Apply[Times, Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ #, Reverse@ #}] &@ IntegerDigits[n, b], {n, 0, 105}]] (* Michael De Vlieger, Oct 22 2019 *)
  • PARI
    A326810(n) = { my(i=1, p=2); while(n && (n%p), n = n\p; p = nextprime(1+p)); (p); };

Formula

a(n) = A053669(A276086(n)).
a(n) = A000040(A328570(n)).
a(n) = A020639(A276087(n)) = A020639(A328613(n)).
a(n) = A276087(n) / A276086(A328476(n)).
For all odd n, a(n) > A276088(n).
For all n >= 0, a(A276086(n)) = A328579(n).
For all n >= 1, A328317(n) = a(A328316(n-1)).

A380535 Numbers such that the least significant nonzero digit in their primorial base representation (A049345) is greater than 1.

Original entry on oeis.org

4, 10, 12, 16, 18, 22, 24, 28, 34, 40, 42, 46, 48, 52, 54, 58, 60, 64, 70, 72, 76, 78, 82, 84, 88, 90, 94, 100, 102, 106, 108, 112, 114, 118, 120, 124, 130, 132, 136, 138, 142, 144, 148, 150, 154, 160, 162, 166, 168, 172, 174, 178, 180, 184, 190, 192, 196, 198, 202, 204, 208, 214, 220, 222, 226, 228, 232, 234, 238, 244, 250
Offset: 1

Views

Author

Antti Karttunen, Feb 11 2025

Keywords

Comments

Equally, numbers k such that A327860(k) [equally, A329029(k)] is a multiple of A053669(k), where A327860 is the arithmetic derivative of the primorial base exp-function, and A053669(k) gives the least prime not dividing k. See comments in A329029.
The asymptotic density of this sequence is 1 - A064648 = 0.294769828... . - Amiram Eldar, Feb 17 2025

Examples

			   n, A049345(n), A276088(n)
  ---------------------------------------------
   4       20       2, thus 4 is present,
  10      120       2, thus 10 is present,
  11      121       1, thus 11 is not present,
  12      200       2, thus 12 is present,
  14      210       1, thus 14 is not present,
  16      220       2, thus 16 is present,
  18      300       3, thus 18 is present.
		

Crossrefs

Cf. A049345, A053669, A064648, A276088, A327860, A329029, A380527, A380534 (characteristic function).
Cf. also A342018.

Programs

  • Mathematica
    q[n_] := Module[{k = n, p = 2, r}, While[{k, r} = QuotientRemainder[k, p]; k > 0 && r == 0, p = NextPrime[p]]; r > 1]; Select[Range[250], q] (* Amiram Eldar, Feb 17 2025 *)
  • PARI
    is_A380535 = A380534;

Formula

{k such that A276088(k) > 1}.

A276094 a(n) = n modulo A002110(A257993(n)), a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 2, 1, 4, 1, 18, 1, 2, 1, 4, 1, 24, 1, 2, 1, 4, 1, 30, 1, 2, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 2, 1, 4, 1, 18, 1, 2, 1, 4, 1, 24, 1, 2, 1, 4, 1, 60, 1, 2, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 2, 1, 4, 1, 18, 1, 2, 1, 4, 1, 24, 1, 2, 1, 4, 1, 90, 1, 2, 1, 4, 1, 6, 1, 2, 1, 4, 1, 12, 1, 2, 1, 4, 1, 18, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 22 2016

Keywords

Crossrefs

Programs

  • Mathematica
    {0}~Join~Table[k = 1; While[! CoprimeQ[Prime@ k, n], k++]; Mod[n, Product[Prime@ i, {i, k}]], {n, 79}] (* Michael De Vlieger, Jun 22 2017 *)
  • Python
    from sympy import nextprime, primepi, primorial
    def a053669(n):
        p = 2
        while True:
            if n%p: return p
            else: p=nextprime(p)
    def a257993(n): return primepi(a053669(n))
    def a002110(n): return 1 if n<1 else primorial(n)
    def a(n): return 0 if n==0 else n%a002110(a257993(n))
    print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 22 2017

Formula

a(0) = 0, and for n >= 1, a(n) = n modulo A002110(A257993(n)).
or a(n) = A276088(n) * A002110(A276084(n)).
Other identities. For all n >= 0:
a(n) = n - A276093(n).
Showing 1-10 of 15 results. Next