cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276175 a(n) = (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4) with a(0) = a(1) = a(2) = a(3) = 1.

Original entry on oeis.org

1, 1, 1, 1, 8, 36, 666, 222111, 685187756, 2819713283228248, 644335913093223286486628176, 5604757351123068775966272886689217889936356651, 14861563788248216173988661093334637018340529129342104300621091389266132702213641
Offset: 0

Views

Author

Bruno Langlois, Aug 23 2016

Keywords

Comments

Conjecture: a(n) is an integer for all n >= 0. It has been checked by computer for n <= 40. A proof was proposed by 'mercio' as an answer to the MSE question, which however lacks details and heavily relies on computation. [Updated by Max Alekseyev, May 07 2023]

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[n] == (a[n - 1] + 1) (a[n - 2] + 1) (a[n - 3] + 1)/a[n - 4],
    a[0] == a[1] == a[2] == a[3] == 1}, a, {n, 0, 12}] (* Michael De Vlieger, Aug 25 2016 *)
    a[ n_] := With[{m = Max[3 - n, n]}, If[ m < 4, 1, (a[m - 1] + 1) (a[m - 2] + 1) (a[m - 3] + 1)/a[m - 4]]]; (* Michael Somos, Jun 02 2019 *)
  • PARI
    a(n) = if (n <=3, 1, (a(n-1)+1)*(a(n-2)+1)*(a(n-3)+1)/a(n-4)); \\ Michel Marcus, Aug 23 2016
    
  • Ruby
    def A(m, n)
      a = Array.new(m, 1)
      ary = [1]
      while ary.size < n + 1
        i = a[1..-1].inject(1){|s, i| s * (i + 1)}
        break if i % a[0] > 0
        a = *a[1..-1], i / a[0]
        ary << a[0]
      end
      ary
    end
    def A276175(n)
      A(4, n)
    end # Seiichi Manyama, Aug 23 2016

Formula

Let b(n) = (b(n-1)*b(n-2)*b(n-3)+1)/b(n-4) with b(0) = 1/2, b(1) = 4, b(2) = b(3) = 1/2, then a(n) = b(n)*b(n+1)*b(n+2). - Seiichi Manyama, Sep 03 2016
The sequence 4*b(n) is given by A362884. Correspondingly, a(n) = A362884(n) * A362884(n+1) * A362884(n+2) / 64. - Max Alekseyev, May 07 2023
a(n) = a(3-n), 0 = a(n)*a(n+4)*(a(n+4)+1) - a(n+5)*a(n+1)*(a(n+1)+1) for all n in Z. - Michael Somos, Feb 23 2019
log(a(n)) ~ c * A289917^n, where c = 0.26774381278698... - Vaclav Kotesovec, Aug 27 2021