cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276349 Numbers consisting of a nonempty string of 1's followed by a nonempty string of 0's.

Original entry on oeis.org

10, 100, 110, 1000, 1100, 1110, 10000, 11000, 11100, 11110, 100000, 110000, 111000, 111100, 111110, 1000000, 1100000, 1110000, 1111000, 1111100, 1111110, 10000000, 11000000, 11100000, 11110000, 11111000, 11111100, 11111110, 100000000, 110000000, 111000000
Offset: 1

Views

Author

Jaroslav Krizek, Aug 30 2016

Keywords

Comments

Intersection of A037415 and A009996 except for 1 [Corrected by David A. Corneth, Aug 30 2016].
Set of terms from sequence A052983.
a(n) is the binary expansion of A043569(n). - Michel Marcus, Sep 04 2016

Examples

			60 is of the form binomial(a, 2) + b where 0 < b <= a and a = 11, b = 5. So a(60) has (11 + 1) digits and 5 leading ones. The other digits are 0. Giving a(60) = 111110000000. It has 7 (more than 1) trailing zeros so the next one, a(61) is a(60) + 10^(7 - 1). - _David A. Corneth_, Aug 30 2016
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^7] | Seqint(Setseq(Set(Sort(Intseq(n))))) eq 10 and Seqint(Sort((Intseq(n)))) eq n];
    
  • Maple
    seq(seq(10^(m+1)*(1-10^(-j))/9,j=1..m),m=1..20); # Robert Israel, Sep 02 2016
  • Mathematica
    Table[FromDigits@ Join[ConstantArray[1, #1], ConstantArray[0, #2]] & @@@ Transpose@ {#, n - #} &@ Range[n - 1], {n, 2, 9}] // Flatten (* Michael De Vlieger, Aug 30 2016 *)
    Flatten[Table[FromDigits[Join[PadRight[{},n,1],PadRight[{},k,0]]],{n,8},{k,8}]]//Sort (* Harvey P. Dale, Jan 09 2019 *)
  • PARI
    is(n) = vecmin(digits(n))==0 && vecmax(digits(n))==1 && digits(n)==vecsort(digits(n), , 4) \\ Felix Fröhlich, Aug 30 2016
    
  • PARI
    a(n) = my(r =  ceil((sqrt(1+8*n)+1)/2), k = n - binomial(r-1, 2));10^(r-k)*(10^(k)-1)/9
    \\ given an element n, computes the next element of the sequence.
    nxt(n) = my(d = digits(n), qd=#d, s = vecsum(d)); if(qd-s>1, n+10^(qd-s-1), 10^qd)
    \\ given an element n of the sequence, computes its place in the sequence.
    inv(n) = my(d = digits(n)); binomial(#d-1,2) + vecsum(d) \\ David A. Corneth, Aug 31 2016
    
  • Python
    from math import isqrt, comb
    def A276349(n): return 10*(10**(m:=isqrt(n<<3)+1>>1)-10**(comb(m+1,2)-n))//9 # Chai Wah Wu, Jun 16 2025

Formula

A227362(a(n)) = 10.
From Robert Israel, Sep 02 2016: (Start)
a((m^2-m)/2+j) = 10^(m+1)*(1-10^(-j))/9 for m>=1, 1<=j<=m.
a(n) = 10*(10^m - 10^(-n+m*(m+1)/2))/9 where m = A002024(n). (End)
A002275(A002260(n)) * 10^A004736(n) - Peter Kagey, Sep 02 2016
Sum_{n>=1} 1/a(n) = A073668. - Amiram Eldar, Feb 20 2022
a(n) = 10*A309761(n). - Chai Wah Wu, Jun 16 2025