cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A167860 Primes p dividing every A167859(m) from m=(p-1)/2 to m=(p-1).

Original entry on oeis.org

7, 47, 191, 383, 439, 1151, 1399, 2351, 2879, 3119, 3511, 3559, 4127, 5087, 5431, 6911, 8887, 9127, 9791, 9887, 12391, 13151, 14407, 15551, 16607, 19543, 20399, 21031, 21319, 21839, 23039, 25391, 26399, 28087, 28463, 28711, 29287, 33223, 39551, 43103, 44879, 46271
Offset: 1

Views

Author

Alexander Adamchuk, Nov 13 2009

Keywords

Comments

Apparently A167860 is a subset of primes of the form 8*k + 7 (A007522).
Every A167859(m) from m=(p-1)/2 to m=(p-1) is divisible by prime p belonging to A167860.
7^3 divides A167859(13) and 7^2 divides A167859(10)-A167859(13).
Every A167859(m) from m=(kp-1 - (p-1)/2) to m=(kp-1) is divisible by prime p from A167860.
Every A167859(m) from m=((p^2-1)/2) to m=(p^2-1) is divisible by prime p from A167860. For p=7 every A167859(m) from m=((p^3-1)/2) to m=(p^3-1) and from m=((p^4-1)/2) to m(p^4-1)is divisible by p^2.

Crossrefs

Programs

  • Maple
    A167859 := proc(n)
        option remember;
        if n <= 1 then
            add( (binomial(2*k, k)/2^k)^2, k=0..n) ;
            4^n*% ;
        else
            4*(5*n^2 - 4*n + 1)*procname(n-1) - 16*(2*n - 1)^2*procname(n-2) ;
            %/n^2 ;
        end if;
    end proc:
    isA167860 := proc(p)
        local m ;
        for m from (p-1)/2 to p-1 do
            if modp(A167859(m),p) > 0 then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A167860 := proc(n)
        option remember ;
        if n = 0 then
            2;
        else
            p := nextprime(procname(n-1)) ;
            while not isA167860(p) do
                p := nextprime(p) ;
            end do ;
            return p;
        end if;
    end proc:
    seq(A167860(n),n=1..10) ; # R. J. Mathar, Jan 22 2025
  • PARI
    is(p) = if(isprime(p)&&p%2, my(m=Mod(1, p), s=m); for(k=1, p\2, s+=(m*=(2*k-1)/k)^2); !s, 0); \\ Jinyuan Wang, Jul 24 2022

Extensions

More terms from Jinyuan Wang, Jul 24 2022

A276807 Number of solutions of the congruence y^2 == x^3 - x^2 - 4*x + 4 (mod p) as p runs through the primes.

Original entry on oeis.org

2, 4, 7, 7, 7, 15, 15, 23, 31, 23, 23, 31, 47, 39, 47, 55, 55, 63, 71, 63, 63, 87, 87, 95, 95, 119, 87, 119, 111, 95, 135, 135, 143, 151, 135, 167, 159, 151, 143, 167, 167, 175, 191, 191, 215, 183, 231, 231, 215, 207, 223, 255, 223, 231, 255, 271, 279, 263, 303, 255
Offset: 1

Views

Author

Seiichi Manyama, Sep 17 2016

Keywords

Comments

This elliptic curve corresponds to a weight 2 newform which is an eta-quotient, namely, eta(2t)*eta(4t)*eta(6t)*eta(12t), see Theorem 2 in Martin & Ono.

Examples

			The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used.
The solutions (x, y) of y^2 == x^3 - x^2 - 4*x + 4 (mod prime(n)) begin:
n, prime(n), a(n)  solutions (x, y)
1,   2,       2:   (0, 0), (1, 0)
2,   3,       4:   (0, 1), (0, 2), (1, 0),
                   (2, 0)
3,   5,       7:   (0, 2), (0, 3), (1, 0),
                   (2, 0), (3, 0), (4, 1),
                   (4, 4)
4,   7,       7:   (0, 2), (0, 5), (1, 0),
                   (2, 0), (4, 1), (4, 6),
                   (5, 0)
		

Crossrefs

Cf. A276649.

Programs

  • Ruby
    require 'prime'
    def A(a3, a2, a4, a6, n)
      ary = []
      Prime.take(n).each{|p|
        a = Array.new(p, 0)
        (0..p - 1).each{|i| a[(i * i + a3 * i) % p] += 1}
        ary << (0..p - 1).inject(0){|s, i| s + a[(i * i * i + a2 * i * i + a4 * i + a6) % p]}
      }
      ary
    end
    def A276807(n)
      A(0, -1, -4, 4, n)
    end

Formula

a(n) gives the number of solutions of the congruence y^2 == x^3 - x^2 - 4*x + 4 (mod prime(n)), n >= 1.

A276847 Expansion of eta(q^2) * eta(q^4) * eta(q^6) * eta(q^12) in powers of q.

Original entry on oeis.org

1, 0, -1, 0, -2, 0, 0, 0, 1, 0, 4, 0, -2, 0, 2, 0, 2, 0, -4, 0, 0, 0, -8, 0, -1, 0, -1, 0, 6, 0, 8, 0, -4, 0, 0, 0, 6, 0, 2, 0, -6, 0, 4, 0, -2, 0, 0, 0, -7, 0, -2, 0, -2, 0, -8, 0, 4, 0, 4, 0, -2, 0, 0, 0, 4, 0, -4, 0, 8, 0, 8, 0, 10, 0, 1, 0, 0, 0, -8, 0, 1, 0
Offset: 1

Views

Author

Seiichi Manyama, Sep 22 2016

Keywords

Comments

The bisection of this sequence containing all nonzero terms is A030188.
Multiplicative. See A030188 for formula. - Andrew Howroyd, Jul 31 2018

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[QPochhammer[x^2] QPochhammer[x^4] QPochhammer[x^6] QPochhammer[x^12], {x, 0, 100}], x] (* Jan Mangaldan, Jan 04 2017 *)

Formula

a(4*n-3) = A271231(4*n-3), a(4*n-2) = 0, a(4*n-1) = -A271231(4*n-1), a(4*n) = 0.
G.f.: x * Product_{k>0} (1 - x^(2*k)) * (1 - x^(4*k)) * (1 - x^(6*k)) * (1 - x^(12*k)).
a(2*n+1) = A030188(n). - Michel Marcus, Sep 25 2016
Euler transform of period 12 sequence [0, -1, 0, -2, 0, -2, 0, -2, 0, -1, 0, -4, ...]. - Georg Fischer, Nov 17 2022
Showing 1-3 of 3 results.