cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A277817 Positions of zeros in A277815; sequence A277711 sorted into ascending order.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 23, 24, 28, 30, 31, 32, 33, 34, 36, 46, 47, 48, 49, 56, 60, 62, 63, 64, 65, 66, 68, 72, 73, 81, 87, 92, 94, 95, 96, 97, 98, 111, 112, 120, 124, 126, 127, 128, 129, 130, 132, 135, 136, 137, 143, 144, 145, 146, 153, 159, 162, 174, 175, 177, 184, 188, 190, 191, 192, 193, 194, 196, 222
Offset: 0

Views

Author

Antti Karttunen, Nov 06 2016

Keywords

Comments

Numbers n for which there is no such k < n that A264977(k) = A264977(n).
After zero, numbers not in the range of A277816.

Crossrefs

Sequence A277711 sorted into ascending order.
Positions of ones in A277824.
Cf. A277884 (a left inverse).

Formula

Other identities. For all n >= 0:
A277884(a(n)) = n.

A023758 Numbers of the form 2^i - 2^j with i >= j.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 56, 60, 62, 63, 64, 96, 112, 120, 124, 126, 127, 128, 192, 224, 240, 248, 252, 254, 255, 256, 384, 448, 480, 496, 504, 508, 510, 511, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1023
Offset: 1

Views

Author

Keywords

Comments

Numbers whose digits in base 2 are in nonincreasing order.
Might be called "nialpdromes".
Subset of A077436. Proof: Since a(n) is of the form (2^i-1)*2^j, i,j >= 0, a(n)^2 = (2^(2i) - 2^(i+1))*2^(2j) + 2^(2j) where the first sum term has i-1 one bits and its 2j-th bit is zero, while the second sum term switches the 2j-th bit to one, giving i one bits, as in a(n). - Ralf Stephan, Mar 08 2004
Numbers whose binary representation contains no "01". - Benoit Cloitre, May 23 2004
Every polynomial with coefficients equal to 1 for the leading terms and 0 after that, evaluated at 2. For instance a(13) = x^4 + x^3 + x^2 at 2, a(14) = x^4 + x^3 + x^2 + x at 2. - Ben Paul Thurston, Jan 11 2008
From Gary W. Adamson, Jul 18 2008: (Start)
As a triangle by rows starting:
1;
2, 3;
4, 6, 7;
8, 12, 14, 15;
16, 24, 28, 30, 31;
...,
equals A000012 * A130123 * A000012, where A130123 = (1, 0,2; 0,0,4; 0,0,0,8; ...). Row sums of this triangle = A000337 starting (1, 5, 17, 49, 129, ...). (End)
First differences are A057728 = 1; 1; 1; 1; 2,1; 1; 4,2,1; 1; 8,4,2,1; 1; ... i.e., decreasing powers of 2, separated by another "1". - M. F. Hasler, May 06 2009
Apart from first term, numbers that are powers of 2 or the sum of some consecutive powers of 2. - Omar E. Pol, Feb 14 2013
From Andres Cicuttin, Apr 29 2016: (Start)
Numbers that can be digitally generated with twisted ring (Johnson) counters. This is, the binary digits of a(n) correspond to those stored in a shift register where the input bit of the first bit storage element is the inverted output of the last storage element. After starting with all 0’s, each new state is obtained by rotating the stored bits but inverting at each state transition the last bit that goes to the first position (see link).
Examples: for a(n) represented by three bits
Binary
a(5)= 4 -> 100 last bit = 0
a(6)= 6 -> 110 first bit = 1 (inverted last bit of previous number)
a(7)= 7 -> 111
and for a(n) represented by four bits
Binary
a(8) = 8 -> 1000
a(9) = 12 -> 1100 last bit = 0
a(10)= 14 -> 1110 first bit = 1 (inverted last bit of previous number)
a(11)= 15 -> 1111
(End)
Powers of 2 represented in bases which are terms of this sequence must always contain at least one digit which is also a power of 2. This is because 2^i mod (2^i - 2^j) = 2^j, which means the last digit always cycles through powers of 2 (or if i=j+1 then the first digit is a power of 2 and the rest are trailing zeros). The only known non-member of this sequence with this property is 5. - Ely Golden, Sep 05 2017
Numbers k such that k = 2^(1 + A000523(k)) - 2^A007814(k). - Daniel Starodubtsev, Aug 05 2021
A002260(n) = v(a(n)/2^v(a(n))+1) and A002024(n) = A002260(n) + v(a(n)) where v is the dyadic valuation (i.e., A007814). - Lorenzo Sauras Altuzarra, Feb 01 2023

Examples

			a(22) = 64 = 32 + 32 = 2^5 + a(16) = 2^A003056(20) + a(22-5-1).
a(23) = 96 = 64 + 32 = 2^6 + a(16) = 2^A003056(21) + a(23-6-1).
a(24) = 112 = 64 + 48 = 2^6 + a(17) = 2^A003056(22) + a(24-6-1).
		

Crossrefs

A000337(r) = sum of row T(r, c) with 0 <= c < r. See also A002024, A003056, A140129, A140130, A221975.
Cf. A007088, A130123, A101082 (complement), A340375 (characteristic function).
This is the base-2 version of A064222. First differences are A057728.
Subsequence of A077436, of A129523, of A277704, and of A333762.
Subsequences: A043569 (nonzero even terms, or equally, nonzero terms doubled), A175332, A272615, A335431, A000396 (its even terms only), A324200.
Positions of zeros in A049502, A265397, A277899, A284264.
Positions of ones in A283983, A283989.
Positions of nonzero terms in A341509 (apart from the initial zero).
Positions of squarefree terms in A260443.
Fixed points of A264977, A277711, A283165, A334666.
Distinct terms in A340632.
Cf. also A309758, A309759, A309761 (for analogous sequences).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a023758 n = a023758_list !! (n-1)
    a023758_list = 0 : f (singleton 1) where
    f s = x : f (if even x then insert z s' else insert z $ insert (z+1) s')
    where z = 2*x; (x, s') = deleteFindMin s
    -- Reinhard Zumkeller, Sep 24 2014, Dec 19 2012
    
  • Maple
    a:=proc(n) local n2,d: n2:=convert(n,base,2): d:={seq(n2[j]-n2[j-1],j=2..nops(n2))}: if n=0 then 0 elif n=1 then 1 elif d={0,1} or d={0} or d={1} then n else fi end: seq(a(n),n=0..2100); # Emeric Deutsch, Apr 22 2006
  • Mathematica
    Union[Flatten[Table[2^i - 2^j, {i, 0, 100}, {j, 0, i}]]] (* T. D. Noe, Mar 15 2011 *)
    Select[Range[0, 2^10], NoneTrue[Differences@ IntegerDigits[#, 2], # > 0 &] &] (* Michael De Vlieger, Sep 05 2017 *)
  • PARI
    for(n=0,2500,if(prod(k=1,length(binary(n))-1,component(binary(n),k)+1-component(binary(n),k+1))>0,print1(n,",")))
    
  • PARI
    A023758(n)= my(r=round(sqrt(2*n--))); (1<<(n-r*(r-1)/2)-1)<<(r*(r+1)/2-n)
    /* or, to illustrate the "decreasing digit" property and analogy to A064222: */
    A023758(n,show=0)={ my(a=0); while(n--, show & print1(a","); a=vecsort(binary(a+1)); a*=vector(#a,j,2^(j-1))~); a} \\ M. F. Hasler, May 06 2009
    
  • PARI
    is(n)=if(n<5,1,n>>=valuation(n,2);n++;n>>valuation(n,2)==1) \\ Charles R Greathouse IV, Jan 04 2016
    
  • PARI
    list(lim)=my(v=List([0]),t); for(i=1,logint(lim\1+1,2), t=2^i-1; while(t<=lim, listput(v,t); t*=2)); Set(v) \\ Charles R Greathouse IV, May 03 2016
    
  • Python
    def a_next(a_n): return (a_n | (a_n >> 1)) + (a_n & 1)
    a_n = 1; a = [0]
    for i in range(55): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 19 2022
    
  • Python
    from math import isqrt
    def A023758(n): return (1<<(m:=isqrt(n-1<<3)+1>>1))-(1<<(m*(m+1)-(n-1<<1)>>1)) # Chai Wah Wu, Feb 23 2025

Formula

a(n) = 2^s(n) - 2^((s(n)^2 + s(n) - 2n)/2) where s(n) = ceiling((-1 + sqrt(1+8n))/2). - Sam Alexander, Jan 08 2005
a(n) = 2^k + a(n-k-1) for 1 < n and k = A003056(n-2). The rows of T(r, c) = 2^r-2^c for 0 <= c < r read from right to left produce this sequence: 1; 2, 3; 4, 6, 7; 8, 12, 14, 15; ... - Frank Ellermann, Dec 06 2001
For n > 0, a(n) mod 2 = A010054(n). - Benoit Cloitre, May 23 2004
A140130(a(n)) = 1 and for n > 1: A140129(a(n)) = A002262(n-2). - Reinhard Zumkeller, May 14 2008
a(n+1) = (2^(n - r(r-1)/2) - 1) 2^(r(r+1)/2 - n), where r=round(sqrt(2n)). - M. F. Hasler, May 06 2009
Start with A000225. If k is in the sequence, then so is 2k. - Ralf Stephan, Aug 16 2013
G.f.: (x^2/((2-x)*(1-x)))*(1 + Sum_{k>=0} x^((k^2+k)/2)*(1 + x*(2^k-1))). The sum is related to Jacobi theta functions. - Robert Israel, Feb 24 2015
A049502(a(n)) = 0. - Reinhard Zumkeller, Jun 17 2015
a(n) = a(n-1) + a(n-d)/a(d*(d+1)/2 + 2) if n > 1, d > 0, where d = A002262(n-2). - Yuchun Ji, May 11 2020
A277699(a(n)) = a(n)^2, A306441(a(n)) = a(n+1). - Antti Karttunen, Feb 15 2021 (the latter identity from A306441)
Sum_{n>=2} 1/a(n) = A211705. - Amiram Eldar, Feb 20 2022

Extensions

Definition changed by N. J. A. Sloane, Jan 05 2008

A264977 a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 1, 6, 7, 8, 5, 2, 7, 12, 1, 14, 15, 16, 13, 10, 7, 4, 5, 14, 11, 24, 13, 2, 15, 28, 1, 30, 31, 32, 29, 26, 7, 20, 13, 14, 3, 8, 1, 10, 11, 28, 5, 22, 19, 48, 21, 26, 15, 4, 13, 30, 19, 56, 29, 2, 31, 60, 1, 62, 63, 64, 61, 58, 7, 52, 29, 14, 19, 40, 25, 26, 3, 28, 13, 6, 11, 16, 9, 2, 11, 20, 1, 22
Offset: 0

Views

Author

Antti Karttunen, Dec 10 2015

Keywords

Comments

a(n) is the n-th Stern polynomial (cf. A260443, A125184) evaluated at X = 2 over the field GF(2).
For n >= 1, a(n) gives the index of the row where n occurs in array A277710.

Examples

			In this example, binary numbers are given zero-padded to four bits.
a(2) = 2a(1) = 2 * 1 = 2.
a(3) = a(1) XOR a(2) = 1 XOR 2 = 0001 XOR 0010 = 0011 = 3.
a(4) = 2a(2) = 2 * 2 = 4.
a(5) = a(2) XOR a(3) = 2 XOR 3 = 0010 XOR 0011 = 0001 = 1.
a(6) = 2a(3) = 2 * 3 = 6.
a(7) = a(3) XOR a(4) = 3 XOR 4 = 0011 XOR 0100 = 0111 = 7.
		

Crossrefs

Cf. A023758 (the fixed points).
Cf. also A068156, A168081, A265407.
Cf. A277700 (binary weight of terms).
Cf. A277701, A277712, A277713 (positions of 1's, 2's and 3's in this sequence).
Cf. A277711 (position of the first occurrence of each n in this sequence).
Cf. also arrays A277710, A099884.

Programs

  • Mathematica
    recurXOR[0] = 0; recurXOR[1] = 1; recurXOR[n_] := recurXOR[n] = If[EvenQ[n], 2recurXOR[n/2], BitXor[recurXOR[(n - 1)/2 + 1], recurXOR[(n - 1)/2]]]; Table[recurXOR[n], {n, 0, 100}] (* Jean-François Alcover, Oct 23 2016 *)
  • Python
    class Memoize:
        def _init_(self, func):
            self.func=func
            self.cache={}
        def _call_(self, arg):
            if arg not in self.cache:
                self.cache[arg] = self.func(arg)
            return self.cache[arg]
    @Memoize
    def a(n): return n if n<2 else 2*a(n//2) if n%2==0 else a((n - 1)//2)^a((n + 1)//2)
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 27 2017

Formula

a(0) = 0, a(1) = 1, a(2*n) = 2*a(n), a(2*n+1) = a(n) XOR a(n+1).
a(n) = A248663(A260443(n)).
a(n) = A048675(A277330(n)). - Antti Karttunen, Oct 27 2016
Other identities. For all n >= 0:
a(n) = n - A265397(n).
From Antti Karttunen, Oct 28 2016: (Start)
A000035(a(n)) = A000035(n). [Preserves the parity of n.]
A010873(a(n)) = A010873(n). [a(n) mod 4 = n mod 4.]
A001511(a(n)) = A001511(n) = A055396(A277330(n)). [In general, the 2-adic valuation of n is preserved.]
A010060(a(n)) = A011655(n).
a(n) <= n.
For n >= 2, a((2^n)+1) = (2^n) - 3.
The following two identities are so far unproved:
For n >= 2, a(3*A000225(n)) = a(A068156(n)) = 5.
For n >= 2, a(A068156(n)-2) = A062709(n) = 2^n + 3.
(End)

A277710 Square array A(r,c), where each row r lists all numbers k for which A264977(k) = r, read by downwards antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

Original entry on oeis.org

1, 5, 2, 13, 10, 3, 29, 26, 39, 4, 41, 58, 75, 20, 9, 61, 82, 147, 52, 21, 6, 85, 122, 207, 116, 45, 78, 7, 125, 170, 291, 164, 93, 150, 11, 8, 173, 250, 411, 244, 189, 294, 19, 40, 81, 209, 346, 579, 340, 381, 414, 35, 104, 105, 18, 253, 418, 819, 500, 657, 582, 67, 232, 165, 42, 23, 281, 506, 927, 692, 765, 822, 131, 328, 213, 90, 43, 12
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2016

Keywords

Comments

Alternative description: Each row r lists the positions of A019565(r) in A277330.
Odd terms occur only on rows with odd index, and even terms only on rows with even index. Specifically: all terms k on row r are equal to r modulo 4, thus the first differences of each row are all multiples of 4.
All the terms on any particular row are either all multiples of two (or respectively: three, or six), or none of them are.

Examples

			The top left 12 x 12 corner of the array:
   1,   5,  13,  29,  41,   61,   85,  125,  173,  209,  253,  281
   2,  10,  26,  58,  82,  122,  170,  250,  346,  418,  506,  562
   3,  39,  75, 147, 207,  291,  411,  579,  819,  927, 1155, 1635
   4,  20,  52, 116, 164,  244,  340,  500,  692,  836, 1012, 1124
   9,  21,  45,  93, 189,  381,  657,  765,  873, 1317, 1533, 1749
   6,  78, 150, 294, 414,  582,  822, 1158, 1638, 1854, 2310, 3270
   7,  11,  19,  35,  67,  131,  259,  311,  359,  515,  619,  655
   8,  40, 104, 232, 328,  488,  680, 1000, 1384, 1672, 2024, 2248
  81, 105, 165, 213, 333,  429,  669,  861, 1341, 1725, 2685, 2721
  18,  42,  90, 186, 378,  762, 1314, 1530, 1746, 2634, 3066, 3498
  23,  43,  79,  83, 103,  155,  163,  203,  307,  323,  403,  611
  12, 156, 300, 588, 828, 1164, 1644, 2316, 3276, 3708, 4620, 6540
		

Crossrefs

Transpose: A277709.
Column 1: A277711, sorted into ascending order: A277817.
Row 1: A277701, Row 2: A277712 (= 2*A277701), Row 3: A277713, Row 4: 4*A277701, Row 5: A277715, Row 6: 2*A277713. Row 8: 8*A277701, Row 10: 2*A277715.
Cf. A277824 (the index of the column where n is located in this array).
Cf. A019565, A264977, A277330, A277816 and permutation pair A277695 & A277696.

Formula

A(r,1) = A277711(r); for c > 1, A(r,c) = A277816(A(r,c-1)).
Other identities. For all r>=1, c>=1:
A(2*r,c) = 2*A(r,c).
A(r,c) modulo 4 = r modulo 4.

Extensions

The dispersion-style formula added by Antti Karttunen, Nov 06 2016
Showing 1-4 of 4 results.