cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A069904 Number of prime factors of n-th triangular number (with multiplicity).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 4, 3, 2, 3, 3, 2, 3, 5, 4, 3, 3, 3, 4, 3, 2, 4, 5, 3, 4, 5, 3, 3, 3, 5, 6, 3, 3, 5, 4, 2, 3, 5, 4, 3, 3, 3, 5, 4, 2, 5, 6, 4, 4, 4, 3, 4, 5, 5, 5, 3, 2, 4, 4, 2, 4, 8, 7, 4, 3, 3, 4, 4, 3, 5, 5, 2, 4, 5, 4, 4, 3, 5, 8, 5, 2, 4, 5, 3, 3, 5, 4, 4, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2002

Keywords

Examples

			A000217(8) = 8*(8+1)/2 = 36 = 2*2*3*3, therefore a(8) = 4.
		

Crossrefs

Programs

Formula

a(n) = A001222(A000217(n)).
From Antti Karttunen, Oct 07 2017: (Start)
a(n) = (A001222(n)+A001222(n+1))-1.
a(n) = A001222(A278253(n)). (End)
From Alois P. Heinz, Aug 05 2019: (Start)
a(n) = 2 <=> n in { A164977 }.
a(n) = 3 <=> n in { A108815 }.
a(n) = 4 <=> n in { A114435 }.
a(n) = 5 <=> n in { A114436 }.
a(n) = 6 <=> n in { A114437 }.
a(n) = 7 <=> n in { A240527 }.
a(n) = 8 <=> n in { A240528 }.
a(n) = 9 <=> n in { A240529 }.
a(n) = 10 <=> n im { A101745 }. (End)

A278254 Least number with the prime signature of n^2; square of the least number with the prime signature of n.

Original entry on oeis.org

1, 4, 4, 16, 4, 36, 4, 64, 16, 36, 4, 144, 4, 36, 36, 256, 4, 144, 4, 144, 36, 36, 4, 576, 16, 36, 64, 144, 4, 900, 4, 1024, 36, 36, 36, 1296, 4, 36, 36, 576, 4, 900, 4, 144, 144, 36, 4, 2304, 16, 144, 36, 144, 4, 576, 36, 576, 36, 36, 4, 3600, 4, 36, 144, 4096, 36, 900, 4, 144, 36, 900, 4, 5184, 4, 36, 144, 144, 36, 900, 4, 2304, 256, 36, 4, 3600, 36, 36, 36
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Times @@ MapIndexed[(Prime@ First@ #2)^#1 &, #] &@ If[Length@ # == 1 && #[[1, 1]] == 1, {0}, Reverse@ Sort@ #[[All, -1]]] &@ FactorInteger[ n^2], {n, 120}] (* Michael De Vlieger, Nov 21 2016 *)
  • PARI
    a(n)=my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i])^2 \\ Charles R Greathouse IV, Feb 03 2017
  • Scheme
    (define (A278254 n) (A000290 (A046523 n)))
    (define (A278254 n) (A046523 (A000290 n)))
    

Formula

a(n) = A046523(n^2) = A046523(n)^2.
a(n) = A278259(2*n).

A278160 Least number with the prime signature of ((n+1)^2 - 1).

Original entry on oeis.org

2, 8, 6, 24, 6, 48, 12, 48, 12, 120, 6, 120, 30, 96, 30, 288, 6, 360, 30, 120, 30, 240, 12, 240, 72, 120, 24, 840, 6, 960, 30, 192, 210, 360, 30, 360, 30, 240, 30, 1680, 6, 840, 60, 120, 60, 480, 12, 1440, 60, 360, 30, 1080, 30, 2160, 210, 240, 30, 840, 6, 840, 60, 384, 420, 1920, 30, 840, 30, 840, 30, 5040, 6, 720, 60, 120, 420, 840, 30, 3360, 48, 480, 48
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2016

Keywords

Crossrefs

Cf. A001359 (positions of 6's).

Programs

  • Mathematica
    Table[Times @@ MapIndexed[(Prime@ First@ #2)^#1 &, #] &@ If[Length@ # == 1 && #[[1, 1]] == 1, {0}, Reverse@ Sort@ #[[All, -1]]] &@ FactorInteger[ (n + 1)^2 - 1], {n, 120}] (* Michael De Vlieger, Nov 21 2016 *)
  • Scheme
    (define (A278160 n) (A046523 (A005563 n)))
    (define (A005563 n) (* n (+ 2 n)))

Formula

a(n) = A046523(A005563(n)) = A046523(((n+1)^2)-1).

A278246 a(n) = least number with the same prime signature as n*(n+3)/2.

Original entry on oeis.org

2, 2, 4, 6, 12, 8, 6, 12, 24, 6, 6, 60, 24, 6, 24, 24, 30, 24, 6, 30, 180, 12, 6, 144, 60, 6, 48, 30, 48, 60, 6, 240, 120, 6, 30, 120, 60, 6, 60, 60, 30, 120, 6, 30, 1080, 12, 12, 360, 60, 12, 48, 210, 60, 48, 30, 60, 420, 6, 6, 840, 96, 30, 120, 96, 210, 60, 30, 30, 360, 30, 6, 1800, 30, 30, 180, 30, 840, 96, 6, 120, 480, 30, 6, 420, 420, 6, 120, 420, 30, 120
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2016

Keywords

Comments

For n > 2, 6 <= a(n) <= n*(n+3)/2. The upper bound occurs for n = 1, 45, 165, 525, 672, 1152, and no others up to 10^9. (Probably this occurs only finitely many times.) - Charles R Greathouse IV, Nov 23 2016

Crossrefs

Programs

Formula

a(n) = A046523(A000096(n)).

A278247 a(n) = least number with the same prime signature as n + (n+1)^2.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 6, 2, 2, 2, 2, 6, 2, 6, 2, 2, 6, 6, 2, 2, 2, 6, 6, 2, 6, 2, 6, 2, 6, 2, 2, 6, 6, 6, 2, 8, 6, 2, 2, 6, 2, 12, 6, 2, 2, 2, 30, 2, 6, 2, 6, 30, 2, 2, 2, 2, 6, 6, 2, 2, 6, 30, 6, 2, 2, 2, 6, 2, 6, 2, 6, 6, 6, 6, 6, 2, 6, 6, 6, 30, 6, 6, 2, 12, 2, 2, 6, 6, 2, 6, 6, 30, 2, 2, 6, 2, 6, 6, 6, 2, 2, 30, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 6, 30, 6, 6
Offset: 0

Views

Author

Antti Karttunen, Nov 21 2016

Keywords

Comments

Almost all terms seem to be primorials, 4848 of the first 5000, in other words, most terms of A028387 (in the same range) are squarefree.

Crossrefs

Programs

Formula

a(n) = A046523(A028387(n)).

A278251 Least number with the prime signature of the n-th central polygonal number.

Original entry on oeis.org

1, 1, 2, 2, 2, 6, 2, 2, 6, 2, 6, 6, 6, 2, 6, 2, 2, 30, 2, 8, 6, 2, 2, 12, 6, 2, 30, 6, 2, 6, 6, 12, 6, 6, 2, 6, 6, 6, 30, 2, 6, 6, 2, 6, 6, 6, 6, 30, 6, 6, 30, 2, 6, 6, 6, 2, 30, 6, 2, 30, 2, 6, 30, 2, 6, 30, 6, 2, 60, 12, 2, 6, 2, 6, 6, 30, 2, 6, 2, 2, 60, 2, 30, 6, 6, 6, 6, 6, 30, 30, 2, 2, 6, 6, 6, 30, 6, 6, 6, 6, 2, 210, 2, 30, 6, 6, 2, 30, 30, 6, 30, 2, 2
Offset: 0

Views

Author

Antti Karttunen, Nov 21 2016

Keywords

Comments

Almost all terms seem to be primorials, 4871 of the first 5212, in other words, most terms of A002061 (in the same range) are squarefree.

Crossrefs

Programs

Formula

a(n) = A046523(A002061(n)).

A278218 Triangle read by rows: T(n,k) = Least number with the prime signature of binomial(n,k).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 4, 6, 4, 1, 1, 2, 6, 6, 2, 1, 1, 6, 6, 12, 6, 6, 1, 1, 2, 6, 6, 6, 6, 2, 1, 1, 8, 12, 24, 30, 24, 12, 8, 1, 1, 4, 36, 60, 60, 60, 60, 36, 4, 1, 1, 6, 12, 120, 210, 180, 210, 120, 12, 6, 1, 1, 2, 6, 30, 210, 210, 210, 210, 30, 6, 2, 1, 1, 12, 30, 60, 60, 360, 420, 360, 60, 60, 30, 12, 1
Offset: 0

Views

Author

Antti Karttunen, Nov 19 2016

Keywords

Examples

			The triangle begins as:
                                 1
                              1,    1
                            1,   2,   1
                         1,   2,    2,   1
                       1,   4,   6,   4,   1
                    1,   2,   6,    6,   2,  1
                  1,   6,   6,  12,   6,   6,  1
                1,  2,   6,   6,    6,   6,  2,  1
              1,  8,  12,  24,  30,  24,  12,  8,  1
            1,  4, 36,  60,  60,   60,  60, 36,  4,  1
          1,  6, 12, 120, 210, 180, 210, 120, 12,  6,  1
        1,  2,  6, 30, 210, 210,  210, 210, 30,  6,  2,  1
      1, 12, 30, 60,  60, 360, 420, 360,  60, 60, 30, 12,  1
    1,  2, 30, 30, 30,  60, 420,  420,  60, 30, 30, 30,  2,  1
  1,  6,  6, 60, 30, 210, 210, 840, 210, 210, 30, 60,  6,  6,  1
    etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Times @@ MapIndexed[(Prime@ First@ #2)^#1 &, #] &@ If[Length@ # == 1 && #[[1, 1]] == 1, {0}, Reverse@ Sort@ #[[All, -1]]] &@ FactorInteger[ Binomial[n, k]], {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 21 2016 *)
  • Scheme
    (define (A278218 n) (A046523 (A007318 n)))

Formula

T(n,k) = A046523(C(n,k)).
a(n) = A046523(A007318(n)). [When viewed as a one-dimensional sequence.]

A278255 Least number with the prime signature of the n-th pentagonal number.

Original entry on oeis.org

1, 2, 12, 6, 6, 6, 30, 12, 12, 6, 48, 210, 6, 6, 210, 24, 12, 12, 60, 30, 30, 30, 30, 60, 12, 30, 1080, 30, 6, 30, 30, 240, 60, 6, 420, 60, 30, 6, 210, 420, 6, 120, 192, 30, 60, 6, 210, 840, 12, 12, 420, 210, 6, 120, 210, 60, 210, 6, 120, 210, 30, 30, 420, 96, 30, 30, 180, 210, 30, 210, 30, 1260, 6, 30, 5040, 30, 210, 30, 30, 120, 144, 60, 60, 210, 30, 6, 2310
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A000326(n)).

A278256 Least number with the same prime signature as the n-th oblong number (A002378).

Original entry on oeis.org

2, 6, 12, 12, 30, 30, 24, 72, 60, 30, 60, 60, 30, 210, 240, 48, 60, 60, 60, 420, 210, 30, 120, 360, 60, 120, 360, 60, 210, 210, 96, 480, 210, 210, 1260, 180, 30, 210, 840, 120, 210, 210, 60, 1260, 420, 30, 240, 720, 180, 420, 420, 60, 120, 840, 840, 840, 210, 30, 420, 420, 30, 420, 2880, 960, 2310, 210, 60, 420, 2310, 210, 360, 360, 30, 420, 1260, 420, 2310
Offset: 1

Views

Author

Antti Karttunen, Nov 22 2016

Keywords

Crossrefs

Odd bisection of A278259.
Cf. also A278253.

Programs

Formula

a(n) = A046523(A002378(n)).
a(n) = A278259((2*n) + 1).
Showing 1-9 of 9 results.