cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106867 Primes of the form 2*x^2 + x*y + 3*y^2.

Original entry on oeis.org

2, 3, 13, 29, 31, 41, 47, 71, 73, 127, 131, 139, 151, 163, 179, 193, 197, 233, 239, 257, 269, 277, 311, 331, 349, 353, 397, 409, 439, 443, 461, 487, 491, 499, 509, 541, 547, 577, 587, 601, 647, 653, 673, 683, 739, 761, 811, 823, 857, 859, 863, 887, 929, 947
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant = -23.
Primes p such that the polynomial x^3-x-1 is irreducible over Zp. The polynomial discriminant is also -23. - T. D. Noe, May 13 2005
Also, primes p such that tau(p) = A000594(p) == -1 (mod 23). [A proof can probably be found in van der Blij (1952). Thanks to Juan Arias-de-Reyna for this reference. - N. J. A. Sloane, Nov 29 2016]

References

  • F. van der Blij, Binary quadratic forms of discriminant -23. Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14, (1952). 498-503; Math. Rev. MR0052462.
  • John Raymond Wilton, "Congruence properties of Ramanujan's function τ(n)." Proceedings of the London Mathematical Society 2.1 (1930): 1-10. The primes are listed in Table II.

Crossrefs

Cf. A086965 (number of distinct zeros of x^3-x-1 mod prime(n)).
Cf. also A000594.
These are the primes in A028929.

Programs

  • Mathematica
    Union[QuadPrimes2[2, 1, 3, 10000], QuadPrimes2[2, -1, 3, 10000]] (* see A106856 *)
  • PARI
    forprime(p=2,10^4,if(0==#polrootsmod(x^3-x-1,p),print1(p,", "))); /* Joerg Arndt, Jul 27 2011 */
    
  • PARI
    forprime(p=2,10^4,if(polisirreducible(Mod(1, p)*(x^3-x-1)), print1(p, ", ") ) ); /* Joerg Arndt, Mar 30 2013 */
    
  • Python
    from itertools import count, islice
    from sympy import prime, GF, Poly
    from sympy.abc import x
    def A106867_gen(): # generator of terms
        return filter(lambda p:Poly(x**3-x-1,domain=GF(p)).is_irreducible, (prime(i) for i in count(1)))
    A106867_list = list(islice(A106867_gen(),20)) # Chai Wah Wu, Nov 11 2022

A033217 Primes of form x^2 + 23*y^2.

Original entry on oeis.org

23, 59, 101, 167, 173, 211, 223, 271, 307, 317, 347, 449, 463, 593, 599, 607, 691, 719, 809, 821, 829, 853, 877, 883, 991, 997, 1097, 1117, 1151, 1163, 1181, 1231, 1319, 1451, 1453, 1481, 1553, 1613, 1669, 1697, 1787, 1789, 1867, 1871, 1879, 1889, 1913, 2027, 2053, 2143, 2309, 2339, 2347, 2381, 2393, 2423, 2539, 2647, 2677, 2693, 2707, 2741, 2819
Offset: 1

Views

Author

Keywords

Comments

Discriminant -23.
Also primes of the form x^2 + x*y + 6*y^2. - N. J. A. Sloane, Jun 02 2014
Also primes of the form x^2 - x*y + 6*y^2 with x and y nonnegative. - T. D. Noe, May 07 2005
Primes p such that X^3-X+1 is split modulo p. E.g., X^3-X+1 = (X-33)*(X-40)*(X-94) modulo 167. - Julien Freslon (julien.freslon(AT)wanadoo.fr), Feb 24 2007
It appears that, if x > 0, then tau(p) = A000594(p) == 2 (mod 23). - Comment from Jud McCranie
In fact, this sequence appears to be the same as primes p such that RamanujanTau(p) == {1,2} (mod 23). - Ray Chandler, Dec 01 2016
Excluding the first term, this sequence is the intersection of A191021 and A256567. - Arkadiusz Wesolowski, Oct 03 2021
From Amiram Eldar, Jan 10 2025: (Start)
a(2)..a(10000) are the first terms of the sequence of primes p such that tau(p) == 2 (mod 23), where tau is Ramanujan's tau function (A000594).
Moree and Noubissie (2024) proved that the following 3 conditions for a prime p are equivalent:
1. tau(p) == 2 (mod 23).
2. p divides A000931(p+3) where A000931 is the Padovan sequence.
3. The number of distinct roots modulo p of the polynomial x^3 - x - 1 is 3. (End)

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992. See pp. 158-160, "Integer 23 - the Tau function".

Crossrefs

Cf. A000594, A191021, A256567. Primes in A028958.

Programs

  • Mathematica
    QuadPrimes2[1, 0, 23, 10000] (* see A106856 *)
    Join[{23}, nn=23; pMax=5000; Union[Reap[Do[p=x^2 + nn y^2; If[p<=pMax&&PrimeQ[p], Sow[p]], {x, Sqrt[pMax]}, {y, Sqrt[pMax/nn]}]][[2, 1]]]] (* Vincenzo Librandi, Sep 05 2016 *)
  • PARI
    isok(p) = isprime(p) && !(kronecker(-23, p)==-1) && !polisirreducible(Mod(1, p)*(x^3-x-1)); \\ Arkadiusz Wesolowski, Oct 03 2021
    
  • PARI
    isok(p) = p==23 || (isprime(p) && #polrootsmod(x^3-x-1, p)==3); \\ Arkadiusz Wesolowski, Oct 09 2021
Showing 1-2 of 2 results.