cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A279096 Numbers k such that sigma(k^3) is prime.

Original entry on oeis.org

4, 9, 16, 25, 64, 81, 169, 289, 625, 961, 1024, 2401, 3721, 5329, 7921, 22201, 26569, 63001, 121801, 124609, 212521, 273529, 358801, 418609, 744769, 885481, 896809, 1048576, 1181569, 1247689, 1510441, 1630729, 1666681, 1682209, 1771561, 1874161, 1985281
Offset: 1

Views

Author

Jon E. Schoenfield, Mar 12 2017

Keywords

Comments

All terms are square. Moreover, each term is of the form p^j where both p and j*3 + 1 are prime (see A279094).

Examples

			4 is in the sequence because sigma(4^3) = sigma(2^6) = 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127, which is prime.
16 is in the sequence because sigma(16^3) = sigma(2^12) = Sum_{m=0..12} 2^m = (2^13 - 1)/(2 - 1) = 8191, which is prime.
36 is not in the sequence because sigma(36^3) = sigma(2^6*3^6) = ((2^7 - 1)/(2 - 1))*((3^7 - 1)/(3 - 1)) = 127*1093, which is not prime. (36 is not of the form p^j where p is prime.)
361 is not in the sequence (even though 361 = 19^2 is of the form p^j where both p and 3*j + 1 are prime) because sigma(361^3) = sigma(19^6) = (19^7 - 1)/(19 - 1) = 49659541 = 701 * 70841.
		

Crossrefs

Cf. A000203 (sigma(k)), A023194 (sigma(k) is prime), A055638 (sigma(k^2) is prime), A279094 (smallest k such that sigma(k^n) is prime).

Programs

  • Mathematica
    mx = 10^7; ee = Select[Range@ Log2@ mx, PrimeQ[3 # + 1] &]; Union@ Reap[ Do[ Do[ If[(v = p^e) <= mx, If[ PrimeQ[(p v^3 - 1)/ (p-1)], Sow@ v], Break[]], {e, ee}], {p, Prime@ Range@ PrimePi@ Sqrt@ mx}]][[2, 1]] (* Giovanni Resta, Mar 12 2017 *)
    Select[Range[2*10^6],PrimeQ[DivisorSigma[1,#^3]]&] (* Harvey P. Dale, Jan 10 2024 *)
  • PARI
    isok(n) = isprime(sigma(n^3)); \\ Michel Marcus, Mar 12 2017

A299147 Numbers k such that sigma(k), sigma(k^2) and sigma(k^3) are primes.

Original entry on oeis.org

4, 64, 289, 253541929, 499477801, 1260747049, 14450203681, 25391466409, 256221229489, 333456586849, 341122579249, 459926756041, 911087431081, 928731181849, 1142288550841, 2880002461249, 2923070670601, 3000305515321, 4103999343889, 4123226708329, 4258977385441
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2018

Keywords

Comments

All terms are squares (proof in A023194).
Sequence {b(n)} of the smallest numbers m such that sigma(m^k) are primes for all k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be greater than 10^16).

Examples

			4 is in the sequence because all sigma(4) = 7, sigma(4^2) = 31 and sigma(4^3) = 127 are primes.
		

Crossrefs

Subsequence of A232444.

Programs

  • Magma
    [n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^2)) and IsPrime(SumOfDivisors(n^3))];
    
  • Maple
    N:= 10^14: # to get all terms <= N
    Res:= NULL:
    p:= 1:
    do
      p:= nextprime(p);
      if p^2 > N then break fi;
      for k from 2 by 2 while p^k <= N do
        if isprime(k+1) and isprime(2*k+1) and isprime(3*k+1) then
          q1:= (p^(k+1)-1)/(p-1);
          q2:= (p^(2*k+1)-1)/(p-1);
          q3:= (p^(3*k+1)-1)/(p-1);
          if isprime(q1) and isprime(q2) and isprime(q3) then
            Res:= Res, p^k;
          fi
        fi
      od
    od:
    sort([Res]); # Robert Israel, Feb 22 2018
  • Mathematica
    k = 1; A299147 = {}; While[k < 4260000000000, If[Union@ PrimeQ@ DivisorSigma[1, {k, k^2, k^3}] == {True}, AppendTo[A299147, k]]; k++]; A299147 (* Robert G. Wilson v, Feb 10 2018 *)
  • PARI
    isok(n) = isprime(sigma(n)) && isprime(sigma(n^2)) && isprime(sigma(n^3)); \\ Michel Marcus, Feb 05 2018

A299153 Numbers k such that sigma(k) and sigma(k^3) are both primes.

Original entry on oeis.org

4, 9, 16, 25, 64, 289, 2401, 7921, 3418801, 19439281, 24730729, 40819321, 52258441, 67848169, 75151561, 76405081, 142396489, 175006441, 185313769, 198443569, 253541929, 352425529, 369062521, 386554921, 414896161, 499477801, 526105969, 684921241, 775678201
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2018

Keywords

Comments

Intersection of A023194 and A279096.
All terms are squares.

Examples

			4 is in the sequence because sigma(4) = 7 and sigma(4^2) = 31 are both primes.
		

Crossrefs

Cf. A000203 (sigma(n)), A055638 (sigma(n^2) is prime), A232444 (sigma(n) and sigma(n^2) are primes), A279094 (the smallest k such that sigma(k^n) is prime), A279096 (sigma(n^3) is prime), A299147 (sigma(n), sigma(n^2) and sigma(n^3) are primes).

Programs

  • Magma
    [n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^3))];
    
  • Mathematica
    Select[Range[10^4], AllTrue[DivisorSigma[1, #] & /@ {#, #^3}, PrimeQ] &] (* Michael De Vlieger, Feb 05 2018 *)
  • PARI
    isok(n) = isprime(sigma(n)) && isprime(sigma(n^3)); \\ Michel Marcus, Feb 05 2018

A299148 a(n) is the smallest number k such that sigma(k) and sigma(k^n) are both primes.

Original entry on oeis.org

2, 2, 4, 2, 25, 2, 262144, 4, 4, 64, 734449, 2, 3100870943041, 9066121, 4, 2, 729, 2, 214355670008317962105386619478205641151753401, 5041, 64, 16, 25, 10651330026288961, 16610312161, 2607021481, 38950081, 1817762776525603445521, 5331481, 2, 2160067977820518171249529658520145004718584607049, 21203610154988994565561
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2018

Keywords

Comments

Sequence b(n) of the smallest numbers m such that sigma(m^k) are all primes for k = 1..n: 2, 2, 4, ... (if fourth term exists, it must be bigger than 10^16).
a(n) is of the form p^e where p, e+1 and e*n+1 are primes. e=1 is possible only in the case p=2. - Robert Israel, Feb 06 2018

Examples

			For n = 3; a(3) = 4 because 4 is the smallest number such that sigma(4) = 7 and sigma(4^3) = 127 are both primes.
		

Crossrefs

Programs

  • Magma
    [Min([n: n in[1..10000000] | IsPrime(SumOfDivisors(n)) and IsPrime(SumOfDivisors(n^k))]): k in [2..12]];
    
  • Maple
    f:= proc(n,Nmin,Nmax) local p, e, M, Res;
      M:= Nmax;
      Res:= -1;
      e:= 0;
      do
        e:= nextprime(e+1)-1;
        if 2^e > M then return Res fi;
        if not isprime(e*n+1) then next fi;
        p:= floor(Nmin^(1/e));
        do
          p:= nextprime(p);
          if p^e > M then break fi;
          if e = 1 and p > 2 then break fi;
          if isprime((p^(e+1)-1)/(p-1)) and isprime((p^(e*n+1)-1)/(p-1)) then
            Res:= p^e;
            M:= p^e;
            break
          fi
        od
      od;
    end proc:
    g:= proc(n) local Nmin,Nmax, v;
      Nmax:= 1;
      do
        Nmin:= Nmax;
        Nmax:= Nmax*10^3;
        v:= f(n,Nmin,Nmax);
        if v > 0 then return v fi;
      od;
    end proc:
    seq(g(n),n=1..50); # Robert Israel, Feb 06 2018
  • Mathematica
    Array[Block[{k = 2}, While[! AllTrue[DivisorSigma[1, #] & /@ {k, k^#}, PrimeQ], k++]; k] &, 10] (* Michael De Vlieger, Feb 05 2018 *)
  • PARI
    a(n) = {my(k=1); while (!(isprime(sigma(k)) && isprime(sigma(k^n))), k++); k;} \\ Michel Marcus, Feb 05 2018

Formula

a(n) >= A279094(n).

Extensions

a(13) to a(32) from Robert Israel, Feb 06 2018
Showing 1-4 of 4 results.