cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A282198 a(n) = k if the last Dyck path that is counted in A279286(n) is the k-th Dyck path.

Original entry on oeis.org

1, 3, 11, 23, 76, 149, 431, 539, 659, 1343, 2678, 2939, 6524, 6929, 8414, 8873, 10027, 25367, 27299, 87073, 113071, 122875, 178595, 185534, 599237, 1308195, 1888172, 4803699
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 08 2017

Keywords

Comments

Since there are 19 concurrent Dyck paths through diagonal position 19818 (not in A279286) that occur after 20 concurrent Dyck paths at position 18915 (in A279286), number 28594 does not occur in this sequence while 27299 does.
For more information about the Dyck paths mentioned see A237593.

Examples

			a(4) = 23 since the point on the diagonal is A279286(4) = 15 and only A240542(20)..A240542(23) = 15.
		

Crossrefs

Programs

  • Mathematica
    a240542[n_] := Sum[(-1)^(k+1)*Ceiling[(n+1)/k - (k+1)/2], {k, 1, Floor[(Sqrt[8n+1]-1)/2]}]
    a282198[b_] := Module[{centers={{1, 1}}, acc={1}, k=2, cPrev=1, cCur, len}, While[k<=b, cCur=a240542[k]; If[Last[acc]==cCur, AppendTo[acc, cCur], len=Length[acc]; If[First[Last[centers]]
    				

Formula

a(n) = max( k : A279286(n) = A240542(k) ), for n >= 1.

A259179 Number of Dyck paths described in A237593 that contain the point (n,n) in the diagram of the symmetric representation of sigma.

Original entry on oeis.org

1, 2, 2, 0, 2, 1, 3, 0, 3, 0, 1, 2, 2, 0, 4, 0, 1, 3, 0, 2, 0, 2, 3, 0, 1, 4, 0, 2, 0, 3, 0, 3, 0, 1, 1, 4, 0, 2, 0, 4, 0, 3, 0, 1, 2, 0, 4, 0, 2, 0, 0, 5, 0, 3, 0, 1, 3, 0, 4, 0, 2, 0, 1, 0, 5, 0, 2, 1, 0, 1, 4, 0, 4, 0, 2, 0, 2, 0, 5, 0, 3, 0, 0, 0, 1, 5, 0, 2, 2, 0, 2, 0, 3, 0, 5, 0, 3, 0, 1, 0, 0, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 11 2015

Keywords

Comments

Since the diagram of the symmetric representation of sigma is also the top view of the stepped pyramid described in A245092, and the diagram is also the top view of the staircase described in A244580, so we have that a(n) is also the height difference (or length of the vertical line segment) at the point (n,n) in the main diagonal of the mentioned structures.
a(n) is the number of occurrences of n in A240542. - Omar E. Pol, Dec 09 2016
Nonzero terms give A280919, the first differences of A071562. - Omar E. Pol, Apr 17 2018
Also first differences of A244367. Where records occur gives A279286. - Omar E. Pol, Apr 20 2020

Examples

			Illustration of initial terms:
--------------------------------------------------------
                           Diagram with 15 Dyck paths
n   A000203(n)  a(n)         to evaluate a(1)..a(10)
--------------------------------------------------------
.                         _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1        1        1      |_| | | | | | | | | | | | | | |
2        3        2      |_ _|_| | | | | | | | | | | | |
3        4        2      |_ _|  _|_| | | | | | | | | | |
4        7        0      |_ _ _|    _|_| | | | | | | | |
5        6        2      |_ _ _|  _|  _ _|_| | | | | | |
6       12        1      |_ _ _ _|  _| |  _ _|_| | | | |
7        8        3      |_ _ _ _| |_ _|_|    _ _|_| | |
8       15        0      |_ _ _ _ _|  _|     |  _ _ _|_|
9       13        3      |_ _ _ _ _| |      _|_| |
10      18        0      |_ _ _ _ _ _|  _ _|    _|
.                        |_ _ _ _ _ _| |  _|  _|
.                        |_ _ _ _ _ _ _| |_ _|
.                        |_ _ _ _ _ _ _| |
.                        |_ _ _ _ _ _ _ _|
.                        |_ _ _ _ _ _ _ _|
.
For n = 3 there are two Dyck paths that contain the point (3,3) so a(3) = 2.
For n = 4 there are no Dyck paths that contain the point (4,4) so a(4) = 0.
		

Crossrefs

Programs

  • Mathematica
    a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k - (k+1)/2], {k, 1, Floor[(Sqrt[8n+1]-1)/2]}]
    a259179[n_] := Module[{t=Table[0, n], k=1, d=1}, While[d<=n, t[[d]]+=1; d=a240542[++k]]; t] (* a(1..n) *)
    a259179[102] (* Hartmut F. W. Hoft, Aug 06 2020 *)

Extensions

More terms from Omar E. Pol, Dec 09 2016

A279385 Irregular triangle read by rows in which row n lists the numbers k such that the largest Dyck path of the symmetric representation of sigma(k) contains the point (n,n), or row n is 0 if no such k exists.

Original entry on oeis.org

1, 2, 3, 4, 5, 0, 6, 7, 8, 9, 10, 11, 0, 12, 13, 14, 0, 15, 16, 17, 18, 19, 0, 20, 21, 22, 23, 0, 24, 25, 26, 27, 0, 28, 29, 0, 30, 31, 32, 33, 34, 0, 35, 36, 37, 38, 39, 0, 40, 41, 0, 42, 43, 44, 0, 45, 46, 47, 0, 48, 49, 50, 51, 52, 53, 0, 54, 55, 0, 56, 57, 58, 59, 0, 60, 61, 62, 0, 63, 64, 65, 0, 66, 67, 68, 69, 0
Offset: 1

Views

Author

Omar E. Pol, Dec 12 2016

Keywords

Comments

For more information about the mentioned Dyck paths see A237593.

Examples

			n         Triangle begins:
1         1;
2         2, 3;
3         4, 5;
4         0;
5         6, 7;
6         8,
7         9, 10, 11;
8         0;
9         12, 13, 14;
10        0;
11        15;
12        16, 17;
13        18, 19;
14        0;
15        20, 21, 22, 23;
16        0;
...
		

Crossrefs

Positive terms give A000027.
Cf. A259179(n) is the number of positive terms in row n.

Programs

  • Mathematica
    (* last computed value is dropped to avoid a potential under count of crossings *)
    a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k-(k+1)/2], {k, 1, Floor[-1/2+1/2 Sqrt[8n+1]]}]
    pathGroups[n_] := Module[{t}, t=Table[{}, a240542[n]]; Map[AppendTo[t[[a240542[#]]], #]&, Range[n]]; Map[If[t[[#]]=={}, t[[#]]={0}]&, Range[Length[t]]]; Most[t]]
    a279385[n_] := Flatten[pathGroups[n]]
    a279385[70] (* sequence *)
    a279385T[n_] := TableForm[pathGroups[n], TableHeadings->{Range[a240542[n]-1], None}]
    a279385T[24] (* display of irregular triangle - Hartmut F. W. Hoft, Feb 02 2022 *)

Extensions

More terms from Omar E. Pol, Jun 20 2018

A280223 Precipice of n: descending by the main diagonal of the pyramid described in A245092, a(n) is the height difference between the n-th level (starting from the top) and the level of the next terrace.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 1, 3, 2, 1, 3, 2, 1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 1, 3, 2, 1, 2, 1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 1, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 5, 4, 3, 2, 1, 3, 2, 1, 1, 3, 2, 1, 4, 3, 2, 1, 2, 1, 1, 5, 4, 3, 2, 1, 2, 1, 1, 1, 4, 3, 2, 1, 4, 3, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 29 2016

Keywords

Comments

The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The terraces at the n-th level of the pyramid are also the parts of the symmetric representation of sigma(n).
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
Note that if a(n) > 1 then the next k terms are the first k positive integers in decreasing order, where k = a(n) - 1.
For more information about the precipices see A277437 and A280295.
a(n) is also the number of numbers >= n whose largest Dyck paths of the symmetric representation of sigma share the same point at the main diagonal of the diagram. For more information see A237593.

Examples

			Descending by the main diagonal of the stepped pyramid, for the levels 9, 10 and 11 we have that the next terrace is in the 12th level, so a(9) = 12 - 9 = 3, a(10) = 12 - 10 = 2, and a(11) = 12 - 11 = 1.
		

Crossrefs

Extensions

More terms from Omar E. Pol, Jan 02 2017

A320137 Numbers that have only one middle divisor.

Original entry on oeis.org

1, 2, 4, 8, 9, 16, 18, 25, 32, 36, 49, 50, 64, 81, 98, 100, 121, 128, 162, 169, 196, 200, 225, 242, 256, 289, 324, 338, 361, 392, 441, 484, 512, 529, 578, 625, 676, 722, 729, 784, 841, 882, 961, 968, 1024, 1058, 1089, 1156, 1250, 1352, 1369, 1444, 1458, 1521, 1681, 1682, 1849, 1922, 1936, 2025, 2048, 2116
Offset: 1

Views

Author

Omar E. Pol, Oct 06 2018

Keywords

Comments

Conjecture 1: sequence consists of numbers k with the property that the difference between the number of partitions of k into an odd number of consecutive parts and the number of partitions of k into an even number of consecutive parts is equal to 1.
Conjecture 2: sequence consists of numbers k with the property that the symmetric representation of sigma(k) has width 1 on the main diagonal.
Conjecture 3: all powers of 2 are in the sequence.
From Hartmut F. W. Hoft, May 24 2022: (Start)
Every number in this sequence is a square or twice a square, i.e., this sequence is a subsequence of A028982, and conjectures 2 and 3 are true (see the link for proofs). Furthermore, all odd numbers in this sequence are squares and form subsequences of A016754 and of A319529.
Every number k in this sequence has the form k = 2^m * q^2, m >= 0, q >= 1 odd, where for any divisor e of q^2 smaller than the largest divisor of q^2 that is less than or equal to row(q^2) = floor((sqrt(8*q^2 + 1) - 1)/2) the inequalities 2^(m+1) * e < row(n) hold (see the link for a proof).
The smallest odd square not in this sequence is 1225 = 35^2 = (5*7)^2 since it has the 3 middle divisors 25, 35, 49 and the width of the symmetric representation of sigma(1225) at the diagonal equals 3. However, the squares of odd primes in this sequence are a subsequence of A259417.
The smallest even square not in this sequence is 144 = 12^2 = (2*2*3)^2 since it has the 3 middle divisors 9, 12, 16 and the width of the symmetric representation of sigma(144) at the diagonal equals 3.
The smallest twice square not in this sequence is 72 = 2 * (2*3)^2 = 2^3 * 3^2 since it has the 3 middle divisors 6, 8, 9 and the width of the symmetric representation of sigma(72) at the diagonal equals 3.
Apart from the powers of 2 in the infinite first row, the numbers in the sequence can be arranged as an irregular triangle with each row containing the finitely many numbers q^2, 2 * q^2, 4 * q^2, ..., 2^m * q^2 satisfying the condition stated above, as shown below:
1 2 4 8 16 32 64 128 256 ...
9 18 36
25 50 100 200
49 98 196 392 784
81 162 324
121 242 484 968 1936 3872
169 338 676 1352 2704 5408 10816
225
289 578 1156 2312 4624 9248 18496 36992
361 722 1444 2888 5776 11552 23104 46208
441 882
529 1058 2116 4232 8464 16928 33856 67712 135424
625 1250 2500 5000
729 1458 2916
841 1682 3364 6728 13456 26912 53824 107648 215296
...
(End)

Examples

			9 is in the sequence because 9 has only one middle divisor: 3.
On the other hand, in accordance with the first conjecture, 9 is in the sequence because there are two partitions of 9 into an odd number of consecutive parts: [9], [4, 3, 2], and there is only one partition of 9 into an even number of consecutive parts: [5, 4], therefore the difference of the number of those partitions is 2 - 1 = 1.
On the other hand, in accordance with the second conjecture, 9 is in the sequence because the symmetric representation of sigma(9) = 13 has width 1 on the main diagonal, as shown below in the first quadrant:
.
.     _ _ _ _ _ 5
.    |_ _ _ _ _|
.              |_ _ 3
.              |_  |
.                |_|_ _ 5
.                    | |
.                    | |
.                    | |
.                    | |
.                    |_|
.
		

Crossrefs

Column 1 of A320051.
First differs from A028982 at a(14).
For the definition of middle divisors see A067742.

Programs

  • Mathematica
    (* computation based on counts of divisors *)
    middleDiv[n_] := Select[Divisors[n], Sqrt[n/2]<=#A237048 and A249223 for width at diagonal *)
    a249223[n_] := Drop[FoldList[Plus, 0, Map[(-1)^(#+1) a237048[n, #]&, Range[Floor[(Sqrt[8n+1]-1)/2]]]], 1]
    a320137W[n_] := Select[Range[n], Last[a249223[#]]==1&]
    a320137W[2116]
    (* Hartmut F. W. Hoft, May 24 2022 *)

A128605 Smallest number m having exactly n divisors d with sqrt(m/2) <= d < sqrt(2*m).

Original entry on oeis.org

3, 1, 6, 72, 120, 1800, 840, 3600, 2520, 28800, 10080, 88200, 27720, 259200, 50400, 176400, 83160, 352800, 138600, 3484800, 277200, 1411200, 360360, 2822400, 831600, 3175200, 720720, 6350400, 1663200, 31363200, 1441440, 28576800, 2162160, 12700800, 3326400, 21344400, 4324320
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 14 2007

Keywords

Comments

A067742(a(n)) = n and A067742(m) <> n for m < a(n).
From Hartmut F. W. Hoft, Feb 06 2017: (Start)
a(66)=86486400 has the largest index n with a(n) <= 100000000, but there are 12 values from a(38) to a(67) that are larger than 100000000.
Conjecture: a(n) = k where p(k) and p(k-1) are the first pair of Dyck paths for the symmetric representation of sigma(k) and sigma(k-1), as described in A237593, having a gap of exactly n units on the diagonal, i.e., it is the sequence of record gaps in sequence A240542; tested through 2000000 with a variant of function A279286. (End)
The first 37 terms are 13-smooth (see A080197). - David A. Corneth, Apr 07 2018

Examples

			A067742(a(5)) = A067742(1800) = #{30,36,40,45,50} = 5;
A067742(a(6)) = A067742(840) = #{21,24,28,30,35,40} = 6;
A067742(a(7)) = A067742(3600) = #{45,48,50,60,72,75,80} = 7.
a(0)=3 since 3 has no middle divisors. - _Hartmut F. W. Hoft_, Feb 06 2017
		

Crossrefs

Cf. A067742.
Related to Dyck paths: A237593, A240542, A279286.

Programs

  • Mathematica
    (* computation based on the function of Michael Somos in A067742 *)
    a128605[pL_,b_] := Module[{posL=Map[0&, Range[pL]], k=1, mCur, count}, While[k<=b, mCur=DivisorSum[k, 1&, k/2 <= #^2 < 2k&]; If[posL[[mCur]]==0, posL[[mCur]]=k]; k++]; Prepend[posL, 3]]
    a128605[70,100000000] (* computes those a(0) .. a(66) <= 100000000 *)
    (* Hartmut F. W. Hoft, Feb 06 2017 *)
  • PARI
    ct(m)=my(lower=if(m%2==0&&issquare(m/2), sqrtint(m/2), sqrtint(m\2)+1), upper=sqrtint(2*m)); sumdiv(m, d, lower<=d && d<=upper)
    v=vector(10^3); need=1; for(m=1, 1e9, t=ct(m); if(t>=need && v[t]==0, v[t]=m; print("a("t") = "n); while(v[need], need++))) \\ Charles R Greathouse IV, Feb 06 2017

Extensions

a(33)-a(37) from Hartmut F. W. Hoft, Feb 06 2017

A277437 Square array read by antidiagonals upwards in which T(n,k) is the n-th number j such that, descending by the main diagonal of the pyramid described in A245092, the height difference between the level j (starting from the top) and the level of the next terrace is equal to k.

Original entry on oeis.org

1, 3, 2, 5, 4, 9, 7, 6, 12, 20, 8, 10, 21, 36, 72, 11, 13, 25, 50, 91, 144, 14, 16, 32, 56, 112
Offset: 1

Views

Author

Omar E. Pol, Dec 29 2016

Keywords

Comments

This is a permutation of the natural numbers.
Column k lists the numbers with precipice k. For more information about the precipices see A280223 and A280295.
The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The terraces at the m-th level of the pyramid are also the parts of the symmetric representation of sigma(m), m >= 1.
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
If a number m is in the column k and k > 1 then m + 1 is the column k - 1.
The largest Dyck path of the symmetric representations of next k - 1 positive integers greater than T(n,k) shares the middle point of the largest Dyck path of the symmetric representation of sigma(T(n,k)). For more information see A237593.

Examples

			The corner of the square array begins:
   1,  2,  9, 20, 72, 144,
   3,  4, 12, 36, 91,
   5,  6, 21, 50,
   7, 10, 25,
   8, 13,
  11,
  ...
T(1,6) = 144 because it is the smallest number with precipice 6.
		

Crossrefs

Formula

T(n,1) = A071562(n+1) - 1.

Extensions

a(20)-a(26) from Omar E. Pol, Jan 02 2017

A280295 Smallest number with precipice n. Descending by the main diagonal of the pyramid described in A245092, the height difference between the level a(n) (starting from the top) and the level of the next terrace is equal to n.

Original entry on oeis.org

1, 2, 9, 20, 72, 144
Offset: 1

Views

Author

Omar E. Pol, Dec 31 2016

Keywords

Comments

The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The terraces at the k-th level of the pyramid are also the parts of the symmetric representation of sigma(k), k >= 1.
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
For more information about the precipices see A277437 and A280223.
Is this sequence infinite?

Examples

			a(3) = 9 because descending by the main diagonal of the pyramid, the height difference between the level 9 and the level of the next terrace is equal to 3, and 9 is the smallest number with this property.
		

Crossrefs

Extensions

a(6) from Omar E. Pol, Jan 02 2017

A276112 Numbers with precipice 1: descending by the main diagonal of the pyramid described in A245092, the height difference between the level a(n) (starting from the top) and the level of the next terrace is equal to 1.

Original entry on oeis.org

1, 3, 5, 7, 8, 11, 14, 15, 17, 19, 23, 24, 27, 29, 31, 34, 35, 39, 41, 44, 47, 48, 49, 53, 55, 59, 62, 63, 65, 69, 71, 76, 79, 80, 83, 87, 89, 90, 95, 97, 98, 99, 103, 107, 109, 111, 116, 119, 120, 125, 127, 129, 131, 134, 139, 142, 143, 149, 152, 153, 155, 159
Offset: 1

Views

Author

Omar E. Pol, Jan 02 2017

Keywords

Comments

The structure of the stepped pyramid arises after the 90-degree-zig-zag folding of the diagram of the isosceles triangle A237593.
The terraces at the k-th level of the pyramid are also the parts of the symmetric representation of sigma(k).
The stepped pyramid is also one of the 3D-quadrants of the stepped pyramid described in A244050.
For more information about the precipices see A277437, A280223 and A280295.
From Hartmut F. W. Hoft, Feb 02 2022: (Start)
Also partial sums of A280919.
a(n) is also the largest number of a Dyck path that crosses the diagonal at point A282131(n) which also is the rightmost number in each nonzero row of the irregular triangle in A279385. (End)

Examples

			From _Hartmut F. W. Hoft_, Feb 02 2022: (Start)
      n: 1  2  3  4  5  6  7  8  9 10 11 12 13 14 index.
A282131: 1  2  3  5  6  7  9 11 12 13 15 17 18 20 position on diagonal.
A276112: 1  3  5  7  8 11 14 15 17 19 23 24 27 29 max index of Dyck path.
A280919: 1  2  2  2  1  3  3  1  2  2  4  1  3  2 paths at diag position.
(End)
		

Crossrefs

Programs

  • Mathematica
    (* last computed value of a280919[ ] is dropped to avoid a potential undercount of crossings *)
    a240542[n_] := Sum[(-1)^(k+1)Ceiling[(n+1)/k-(k+1)/2], {k, 1, Floor[-1/2+1/2 Sqrt[8n+1]]}]
    a280919[n_] := Most[Map[Length, Split[Map[a240542, Range[n]]]]]
    A276112[160] (* Hartmut F. W. Hoft, Feb 02 2022 *)

Formula

a(n) = A071562(n+1) - 1.
a(n) = Sum_{i=1..n} A280919(i), n >= 1. - Hartmut F. W. Hoft, Feb 02 2022

A320142 Numbers that have exactly two middle divisors.

Original entry on oeis.org

6, 12, 15, 20, 24, 28, 30, 35, 40, 42, 45, 48, 54, 56, 60, 63, 66, 70, 77, 80, 84, 88, 90, 91, 96, 99, 104, 108, 110, 112, 117, 126, 130, 132, 135, 140, 143, 150, 153, 154, 156, 160, 165, 168, 170, 176, 182, 187, 190, 192, 195, 198, 204, 208, 209, 210, 216, 220, 221, 224, 228, 231, 234, 238, 247, 255, 260
Offset: 1

Views

Author

Omar E. Pol, Oct 06 2018

Keywords

Comments

Conjecture 1: numbers k with the property that the difference between the number of partitions of k into an odd number of consecutive parts and the number of partitions of k into an even number of consecutive parts is equal to 2.
Conjecture 2: numbers k with the property that symmetric representation of sigma(k) has width 2 on the main diagonal.
By the theorem in A067742 conjecture 2 is true. - Hartmut F. W. Hoft, Aug 18 2024

Examples

			15 is in the sequence because 15 has two middle divisors: 3 and 5.
On the other hand, in accordance with the first conjecture, 15 is in the sequence because there are three partitions of 15 into an odd number of consecutive parts: [15], [8, 7], [5, 4, 3, 2, 1], and there is only one partition of 15 into an even number of consecutive parts: [8, 7], therefore the difference of the number of those partitions is 3 - 1 = 2.
On the other hand, in accordance with the second conjecture, 15 is in the sequence because the symmetric representation of sigma(15) = 24 has width 2 on the main diagonal, as shown below in the fourth quadrant:
.                                _
.                               | |
.                               | |
.                               | |
.                               | |
.                               | |
.                               | |
.                               | |
.                          _ _ _|_|
.                      _ _| |      8
.                     |    _|
.                    _|  _|
.                   |_ _|  8
.                   |
.    _ _ _ _ _ _ _ _|
.   |_ _ _ _ _ _ _ _|
.                    8
.
		

Crossrefs

Column 2 of A320051.
First differs from A001284 at a(19).
For the definition of middle divisors see A067742.

Programs

  • Mathematica
    a320142Q[k_] := Length[Select[Divisors[k], k/2<=#^2<2k&]]==2
    a320142[n_] := Select[Range[n], a320142Q]
    a320142[260] (* Hartmut F. W. Hoft, Aug 20 2024 *)
Showing 1-10 of 15 results. Next