cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A085801 Maximum number of nonattacking queens on an n X n toroidal board.

Original entry on oeis.org

1, 1, 1, 2, 5, 4, 7, 6, 7, 9, 11, 10, 13, 13, 13, 14, 17, 16, 19, 18, 19, 21, 23, 22, 25, 25, 25, 26, 29, 28, 31, 30, 31, 33, 35, 34, 37, 37, 37, 38, 41, 40, 43, 42, 43, 45, 47, 46, 49, 49, 49, 50, 53, 52, 55, 54, 55, 57, 59, 58, 61, 61, 61, 62, 65, 64, 67, 66
Offset: 1

Views

Author

Konrad Schlude, Jul 24 2003

Keywords

Comments

Independence number of the queens' graph on toroidal n X n board. - Andrey Zabolotskiy, Dec 11 2016

Examples

			Four non-attacking queens can be placed on a 6 X 6 toroidal board:
......
..Q...
....Q.
.Q....
...Q..
......
But five queens cannot. Hence a(6) = 4.
		

References

  • G. Polya: Über die 'Doppelt-Periodischen' Loesungen des n-Damen-Problems, in: W. Ahrens: Mathematische Unterhaltungen und Spiele, Teubner, Leipzig, 1918, 364-374. Reprinted in: G. Polya: Collected Works, Vol. V, 237-247.

Crossrefs

Programs

  • Mathematica
    (* Explicit formula, based on an article by Monsky: *)
    Table[n-1/6*(2*Cos[Pi*n/2]-3*Cos[Pi*n/3]+5*Cos[2*Pi*n/3]-Cos[Pi*n/6]-Cos[5*Pi*n/6]+3*Cos[Pi*n]+7),{n,1,100}] (* Vaclav Kotesovec, Dec 13 2010 *)
  • PARI
    a(n)=n-1/6*(2*cos(Pi*n/2)-3*cos(Pi*n/3)+5*cos(2*Pi*n/3)-cos(Pi*n/6)-cos(5*Pi*n/6)+3*cos(Pi*n)+7);
    vector(60,n,round(a(n))) \\ Joerg Arndt, Dec 13 2010

Formula

G.f.: (2*x^12 - x^11 + 2*x^10 + 2*x^9 + x^8 - x^7 + 3*x^6 - x^5 + 3*x^4 + x^3 + 1)/(x^13 - x^12 - x + 1) = (2*x^12 - x^11 + 2*x^10 + 2*x^9 + x^8 - x^7 + 3*x^6 - x^5 + 3*x^4 + x^3 + 1)/((x - 1)^2*(x + 1)*(x^2 + 1)*(x^2 - x + 1)*(x^2 + x + 1)*(x^4 - x^2 + 1)). - Joerg Arndt, Dec 13 2010
From Andrey Zabolotskiy, Dec 11 2016: (Start)
a(n) = n if n = 1, 5, 7, 11 (mod 12);
a(n) = n-1 if n = 2, 10 (mod 12);
a(n) = n-2 otherwise.
(End)

A279402 Domination number for queen graph on an n X n toroidal board.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 4, 4, 5, 5, 5, 6, 7, 7, 5, 8, 9, 8, 10, 10, 7, 11
Offset: 1

Views

Author

Andrey Zabolotskiy, Dec 11 2016

Keywords

Comments

That is, the minimal number of queens needed to cover an n X n toroidal chessboard so that every square either has a queen on it, or is under attack by a queen, or both.
Row lengths of the triangle A279403.
All dominating sets are translation-invariant on the torus.
a(4*n) <= 2*n.
a(n) <= A075458(n).

Examples

			The minimal dominating set for the queens' graph on a 15 X 15 toroidal board is:
...............
..........Q....
...............
...............
.Q.............
...............
...............
.......Q.......
...............
...............
.............Q.
...............
...............
....Q..........
...............
Hence a(15) = 5.
		

References

  • John J. Watkins, Across the Board: The Mathematics of Chessboard Problem, Princeton University Press, 2004, pp. 139-140.

Crossrefs

Formula

a(3*n) = n if n == 1, 5, 7, 11 (mod 12);
a(3*n) = n+1 if n == 2, 10 (mod 12);
a(3*n) = n+2 otherwise.
I.e., a(3*n) = 2*n - A085801(n).

Extensions

a(16)-a(22) from Andy Huchala, Mar 04 2024

A299029 Triangle read by rows: Independent domination number for rectangular queens graph Q(n,m), 1 <= n <= m.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 1, 2, 2, 3, 3, 4, 1, 2, 3, 3, 4, 4, 4, 1, 2, 3, 4, 4, 4, 5, 5, 1, 2, 3, 4, 4, 4, 5, 5, 5, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 1, 2, 3, 4, 4, 5, 5, 6, 5, 5, 5, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 1, 2, 3, 4, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8
Offset: 1

Views

Author

Sandor Bozoki, Feb 01 2018

Keywords

Comments

The queens graph Q(n X m) has the squares of the n X m chessboard as its vertices; two squares are adjacent if they are both in the same row, column, or diagonal of the board. A set D of squares of Q(n X m) is a dominating set for Q(n X m) if every square of Q(n X m) is either in D or adjacent to a square in D. The minimum size of an independent dominating set of Q(n X m) is the independent domination number, denoted by i(Q(n X m)).
Less formally, i(Q(n X m)) is the number of independent queens that are necessary and sufficient to all squares of the n X m chessboard be occupied or attacked.
Chessboards 8 X 11 and 18 X 11 are of special interest, because they cannot be dominated by 5 and 8 independent queens, respectively, although the larger boards 9 X 11, 10 X 11, 11 X 11 and 18 X 12 are. It is open how many such counterexamples of this kind of monotonicity exist.

Examples

			Table begins
  m\n| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18
  ---+-----------------------------------------------------
   1 | 1
   2 | 1  1
   3 | 1  1  1
   4 | 1  2  2  3
   5 | 1  2  2  3  3
   6 | 1  2  2  3  3  4
   7 | 1  2  3  3  4  4  4
   8 | 1  2  3  4  4  4  5  5
   9 | 1  2  3  4  4  4  5  5  5
  10 | 1  2  3  4  4  4  5  5  5  5
  11 | 1  2  3  4  4  5  5  6  5  5  5
  12 | 1  2  3  4  4  5  5  6  6  6  6  7
  13 | 1  2  3  4  5  5  6  6  6  7  7  7  7
  14 | 1  2  3  4  5  6  6  6  6  7  7  8  8  8
  15 | 1  2  3  4  5  6  6  7  7  7  7  8  8  9  9
  16 | 1  2  3  4  5  6  6  7  7  7  8  8  8  9  9  9
  17 | 1  2  3  4  5  6  7  7  7  8  8  8  9  9  9  9  9
  18 | 1  2  3  4  5  6  7  7  8  8  9  8  9  9  9 10 10 10
		

Crossrefs

Diagonal elements are in A075324: Independent domination number for queens graph Q(n).
Cf. A274138: Domination number for rectangular queens graph Q(n,m).
Cf. A279404: Independent domination number for queens graph on an n X n toroidal board.

A321684 Independent domination number of the n X n grid graph.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 10, 12, 16, 21, 24, 30, 35, 40, 47, 53, 60, 68, 76, 84, 92, 101, 111, 121, 131, 141, 152, 164, 176, 188, 200, 213, 227, 241, 255, 269, 284, 300, 316, 332, 348, 365, 383, 401, 419, 437, 456, 476, 496, 516, 536, 557, 579, 601, 623, 645, 668
Offset: 0

Views

Author

Andrey Zabolotskiy, Jan 14 2019

Keywords

Crossrefs

Programs

  • Maple
    ogf := (-41*x^6 + 47*x^5 - x^3 - x^2 + 41*x - 47)/((x - 1)^3*(x^4 + x^3 + x^2 + x + 1)): ser := series(ogf, x, 44):
    (0,1,2,3,4,7,10,12,16,21,24,30,35,40), seq(coeff(ser, x, n), n=0..42); # Peter Luschny, Jan 14 2019
  • PARI
    concat(0, Vec(x*(1 + 2*x^4 - x^5 - x^6 + 2*x^7 + x^8 - 4*x^9 + 3*x^10 - 2*x^12 + x^13 + x^14 - 2*x^15 + 2*x^16 - 2*x^18 + x^19) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)) + O(x^40))) \\ Colin Barker, Jan 14 2019

Formula

For n >= 14, a(n) = floor((n+2)^2 / 5 - 4).
a(n) = A104519(n+2), the domination number of the n X n grid graph, for all n except for n = 9, 11.
From Colin Barker, Jan 14 2019: (Start)
G.f.: x*(1 + 2*x^4 - x^5 - x^6 + 2*x^7 + x^8 - 4*x^9 + 3*x^10 - 2*x^12 + x^13 + x^14 - 2*x^15 + 2*x^16 - 2*x^18 + x^19) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)).
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + a(n-7) for n > 20.
(End)

A342576 Independent domination number for knight graph on an n X n board.

Original entry on oeis.org

1, 4, 4, 4, 5, 8, 13, 14, 14, 16, 22, 24, 29, 33, 36, 40, 47, 52, 58, 63, 68
Offset: 1

Views

Author

Andrey Zabolotskiy, Mar 15 2021

Keywords

References

  • Sandra M. Hedetniemi, Stephen T. Hedetniemi, Robert Reynolds, Combinatorial Problems on Chessboards: II, in: Domination in Graphs - Advanced Topics, Marcel Dekker, 1998. See p. 141.

Crossrefs

Programs

  • Maple
    f:= proc(N)
      local verts,Rverts,edg,cons,i,j,e;
      verts:= [seq(seq([i,j],i=1..N),j=1..N)]:
      for i from 1 to N^2 do Rverts[op(verts[i])]:= i od:
      edg:= {seq(seq({Rverts[i,j],Rverts[i+1,j+2]},i=1..N-1),j=1..N-2),
           seq(seq({Rverts[i,j],Rverts[i+2,j+1]},i=1..N-2),j=1..N-1),
           seq(seq({Rverts[i,j],Rverts[i+1,j-2]},i=1..N-1),j=3..N),
           seq(seq({Rverts[i,j],Rverts[i+2,j-1]},i=1..N-2),j=2..N)}:
      cons:= {seq(x[e[1]]+x[e[2]]<=1, e=edg),
        seq(x[i]+add(`if`(member({i,j},edg),x[j],0),j=1..N^2)>=1, i=1..N^2)}:
      Optimization:-Minimize(add(x[i],i=1..N^2),cons,assume=binary)[1]
    end proc:
    map(f, [$1..13]); # Robert Israel, Mar 17 2021

Extensions

a(11) to a(14) from Robert Israel, Mar 17 2021
a(15)-a(18) from Eric W. Weisstein, Aug 01 2023
a(19) from Eric W. Weisstein, Jan 14 2024
a(20)-a(21) from Andy Huchala, Mar 10 2024
Showing 1-5 of 5 results.