cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A078140 Convolutory inverse of signed lower Wythoff sequence.

Original entry on oeis.org

1, 3, 5, 9, 17, 30, 52, 90, 154, 262, 446, 758, 1285, 2176, 3683, 6230, 10533, 17803, 30085, 50831, 85873, 145063, 245037, 413891, 699082, 1180761, 1994293, 3368302, 5688920, 9608292, 16227841, 27407792, 46289925, 78180465, 132041227
Offset: 1

Views

Author

Clark Kimberling, Nov 23 2002

Keywords

Comments

Suppose that r is a real number in the interval [3/2, 5/3). Let C(r) = (c(k)) be the sequence of coefficients in the Maclaurin series for 1/(Sum_{k>=0} floor((k+1)*r))(-x)^k). It appears that c(k) > 0 for all k >= 0. Indeed, it appears that C(r) is strictly increasing and that the limit L(r) of c(k+1)/c(k) as k -> oo exists. Following is a guide for selected numbers r.
** r ** C(r) L(r)
sqrt(7/3) A188135 A288238
sqrt(5/2) A288230 A288240
(1 + sqrt(5))/2 A078140 A281112
sqrt(8/3) A288233 A288935
-1 + sqrt(7) A288234 A289003
-4/5 + sqrt(6) A288236 A289032
sqrt(11/4) A288237 A289033

Examples

			a(5) = 17 = -[w(5)*a(1)-w(4)*a(2)+w(3)*a(3)-w(2)*a(4)] = -8*1+6*3-4*5+3*9. (a(1),a(2),...,a(n))(*)(w(1),-w(2),w(3),...,-d*w(n)) = (1,0,0,...,0), where (*) denotes convolution, w = lower Wythoff sequence, A000201.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sum[Floor[GoldenRatio*(k + 1)] (-x)^k, {k, 0, 50}],
    {x, 0,50}], x]  (* Clark Kimberling, Dec 12 2016 *)

Formula

a(n) = d*[w(n)*a(1)-w(n-1)*a(2)+...+d*w(2)*a(n-1)], where d=(-1)^n, with a(1)=1 and w=floor(n*tau), tau=(1+sqrt(5))/2.

Extensions

Comments added by Clark Kimberling, Jul 10 2017

A109134 Decimal expansion of Phi, the real root of the equation 1/x = (x-1)^2.

Original entry on oeis.org

1, 7, 5, 4, 8, 7, 7, 6, 6, 6, 2, 4, 6, 6, 9, 2, 7, 6, 0, 0, 4, 9, 5, 0, 8, 8, 9, 6, 3, 5, 8, 5, 2, 8, 6, 9, 1, 8, 9, 4, 6, 0, 6, 6, 1, 7, 7, 7, 2, 7, 9, 3, 1, 4, 3, 9, 8, 9, 2, 8, 3, 9, 7, 0, 6, 4, 6, 0, 8, 0, 6, 5, 5, 1, 2, 8, 0, 8, 1, 0, 9, 0, 7, 3, 8, 2, 2, 7, 0, 9, 2, 8, 4, 2, 2, 5, 0, 3, 0, 3, 6, 4, 8, 3, 7
Offset: 1

Views

Author

Lekraj Beedassy, Aug 17 2005

Keywords

Comments

The silver number (A060006) is equal to Phi*(Phi-1).
Also Phi*(Phi-1) = 1/(Phi-1). - Richard R. Forberg, Oct 08 2014
Equations to which this is a root can also be written as: x = sqrt(x + sqrt(x)); x^2 - x - sqrt(x) = 0; or this form where n = 1: x = n + 1/sqrt(x). When n = 2 then the root is 2.618033988... = A104457 = 1 + A001622 or 1 + "Golden Ratio" called phi. - Richard R. Forberg, Oct 08 2014
Also equals the largest root (negated) of the Mandelbrot polynomial P_2(z) = 1+z*(1+z)^2. - Jean-François Alcover, Apr 16 2015
Suppose that r is a real number in the interval [3/2, 5/3). Let C(r) = (c(k)) be the sequence of coefficients in the Maclaurin series for 1/(Sum_{k>=0} floor((k+1)*r))(-x)^k). Conjectures: the limit L(r) of c(k+1)/c(k) as k -> oo exists, L(r) is discontinuous at 5/3 (cf. A279676), and the left limit of L(r) as r->5/3 is Phi. - Clark Kimberling, Jul 11 2017
From Wolfdieter Lang, Nov 07 2022: (Start)
This equals r + 2/3 where r is the real root of y^3 - (1/3)*y - 25/27.
The other roots of x^3 - 2*x^2 + x - 1 are (2 + w1*((25 + 3*sqrt(69))/2)^(1/3) + w2*((25 - 3*sqrt(69))/2)^(1/3))/3 = 0.1225611668... + 0.7448617668...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex conjugate roots of x^3 - 1.
Using hyperbolic functions these roots are (2 - cosh((1/3)*arccosh(25/2)) + sqrt(3)*sinh((1/3)*arccosh(25/2))*i)/3, and its complex conjugate. (End)

Examples

			1.75487766624669276004950889635852869189460661777279314398928397064...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 5.11, p. 340.
  • Martin Gardner, A Gardner's Workout, pp. 124-126, A. K. Peters MA 2001.

Crossrefs

Programs

  • Mathematica
    FindRoot[x^3 - 2x^2 + x - 1 == 0, {x, 1.75}, WorkingPrecision -> 128][[1, 2]] (* Robert G. Wilson v, Aug 19 2005 *)
    Root[x^3-2x^2+x-1, x, 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    d=104;default(realprecision,d);print(k=solve(x=1,2,(x-1)^2-1/x)); for(c=0,d,z=floor(k);print1(z,",",);k=10*(k-z))
    
  • PARI
    polrootsreal(x^3-2*x^2+x-1)[1] \\ Charles R Greathouse IV, Aug 15 2014

Formula

Equals 1+A075778. - R. J. Mathar, Aug 20 2008
Equals (1/6*(108+12*sqrt(69))^(1/3) + 2/(108+12*sqrt(69))^(1/3))^2. - Vaclav Kotesovec, Oct 08 2014
Equals Rho^2 where Rho is the plastic number 1.3247179572...(see A060006). - Philippe Deléham, Sep 29 2020
From Wolfdieter Lang, Nov 07 2022: (Start)
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 + 3*sqrt(69))/2)^(-1/3))/3.
Equals (2 + ((25 + 3*sqrt(69))/2)^(1/3) + ((25 - 3*sqrt(69))/2)^(1/3))/3.
Equals 2*(1 + cosh((1/3)*arccosh(25/2)))/3. (End)
Equals - Sum_{k>=1} Gamma(k - k/5 - 1)*Gamma(k/5 + 1)*sin(3*k*Pi/5)/(k*Pi*Gamma(k)). - Antonio Graciá Llorente, Dec 14 2024

Extensions

Extended by Klaus Brockhaus and Robert G. Wilson v, Aug 19 2005

A279634 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 3/2.

Original entry on oeis.org

1, -3, 5, -9, 18, -36, 72, -144, 288, -576, 1152, -2304, 4608, -9216, 18432, -36864, 73728, -147456, 294912, -589824, 1179648, -2359296, 4718592, -9437184, 18874368, -37748736, 75497472, -150994944, 301989888, -603979776, 1207959552, -2415919104, 4831838208
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2016

Keywords

Comments

After first 3 terms, agrees with A005010 except for signs; in particular 9 divides a(n) for n >= 3.
Suppose r = c/d is a rational number and (a(n)) is the coefficient series for 1/([r] + [2r]x + [3r]x^2 + ...). Let (s(k)) be the increasing sequence of indices n(k) for which a(n(k)) > = 0. In the table below, "yes" indicates that a check of the first 1000 terms indicates that (n(k)) is (eventually) periodic. Column 1 gives selected values of r, and column 2 gives the corresponding coefficient series.
3/2 A279634 yes
4/3 A279675 no
5/3 A279676 no
5/4 A279677 yes
7/4 A279678 yes
6/5 A279778 no
7/5 A279779 no
8/5 A279780 yes
9/5 A279781 no

Crossrefs

Cf. A005010.

Programs

  • Mathematica
    z = 50; f[x_] := f[x] = Sum[Floor[(3/2)*(k + 1)] x^k, {k, 0, z}]; f[x]
    CoefficientList[Series[1/f[x], {x, 0, z}], x]
    LinearRecurrence[{-2},{1,-3,5,-9},40] (* Harvey P. Dale, Jul 28 2023 *)

Formula

G.f.: 1/(1 + 3x + 4x^2 + 6x^3 + ...).
G.f.: (1 - x) (1 - x^2)/(1 + 2x).
E.g.f.: - (1/8) - (3/4)*x + (1/4)*x^2 + (9/8)*exp(-2*x). - Alejandro J. Becerra Jr., Feb 16 2021

A279675 Coefficients in the expansion of 1/([r] + [2r]x + [3r]x^2 + ...); [ ] = floor, r = 4/3.

Original entry on oeis.org

1, -2, 0, 3, -2, -4, 8, 0, -16, 16, 16, -48, 16, 80, -112, -48, 272, -176, -368, 720, 16, -1456, 1424, 1488, -4336, 1360, 7312, -10032, -4592, 24656, -15472, -33840, 64784, 2896, -132464, 126672, 138256, -391600, 115088, 668112, -898288, -437936, 2234512
Offset: 0

Views

Author

Clark Kimberling, Dec 18 2016

Keywords

Comments

If n >=7, then 16 divides a(n).

Crossrefs

Programs

  • Mathematica
    z = 50; f[x_] := f[x] = Sum[Floor[(4/3)*(k + 1)] x^k, {k, 0, z}]; f[x]
    CoefficientList[Series[1/f[x], {x, 0, z}], x]

Formula

G.f.: 1/(1 + 2x + 4x^2 + 5x^3 + 6x^4 + 8x^5 + ...).
G.f.: (1 - x) (1 - x^3)/(1 + x + 2 x^2).
Showing 1-4 of 4 results.