A078140 Convolutory inverse of signed lower Wythoff sequence.
1, 3, 5, 9, 17, 30, 52, 90, 154, 262, 446, 758, 1285, 2176, 3683, 6230, 10533, 17803, 30085, 50831, 85873, 145063, 245037, 413891, 699082, 1180761, 1994293, 3368302, 5688920, 9608292, 16227841, 27407792, 46289925, 78180465, 132041227
Offset: 1
Keywords
Examples
a(5) = 17 = -[w(5)*a(1)-w(4)*a(2)+w(3)*a(3)-w(2)*a(4)] = -8*1+6*3-4*5+3*9. (a(1),a(2),...,a(n))(*)(w(1),-w(2),w(3),...,-d*w(n)) = (1,0,0,...,0), where (*) denotes convolution, w = lower Wythoff sequence, A000201.
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Clark Kimberling, Another question about the golden ratio and other numbers, MathOverflow, Jan 17 2017.
Programs
-
Mathematica
CoefficientList[Series[1/Sum[Floor[GoldenRatio*(k + 1)] (-x)^k, {k, 0, 50}], {x, 0,50}], x] (* Clark Kimberling, Dec 12 2016 *)
Formula
a(n) = d*[w(n)*a(1)-w(n-1)*a(2)+...+d*w(2)*a(n-1)], where d=(-1)^n, with a(1)=1 and w=floor(n*tau), tau=(1+sqrt(5))/2.
Extensions
Comments added by Clark Kimberling, Jul 10 2017
Comments