cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279912 a(n) = Sum_{i=1..n} denominator(i^n/n).

Original entry on oeis.org

0, 1, 3, 7, 10, 21, 21, 43, 36, 57, 63, 111, 70, 157, 129, 147, 136, 273, 171, 343, 210, 301, 333, 507, 252, 505, 471, 495, 430, 813, 441, 931, 528, 777, 819, 903, 570, 1333, 1029, 1099, 756, 1641, 903, 1807, 1110, 1197, 1521, 2163, 952, 2065, 1515, 1911, 1570, 2757
Offset: 0

Views

Author

Wesley Ivan Hurt, Dec 22 2016

Keywords

Comments

Multiplicative because this sequence is the Dirichlet convolution of A000027 and A127473 which are both multiplicative. - Andrew Howroyd, Aug 05 2018

Crossrefs

Programs

  • GAP
    List([0..10],n->Sum([1..n],k->DenominatorRat(k^n/n))); # Muniru A Asiru, Oct 24 2018
  • Maple
    A279912:=n->add(denom(i^n/n), i=1..n): seq(A279912(n), n=0..100);
  • Mathematica
    Table[DivisorSum[n, # EulerPhi[n/#]^2 &], {n, 53}] (* Michael De Vlieger, Aug 05 2018 *)
  • PARI
    a(n) = sum(i=1, n, denominator(i^n/n)); \\ Michel Marcus, Jun 18 2018
    
  • PARI
    a(n) = sumdiv(n, d, d*eulerphi(n/d)^2); \\ Michel Marcus, Jun 18 2018
    
  • PARI
    a(n) = my(f=factor(n)); if(n==0, 0, prod(k=1, #f~, f[k,1]^(f[k,2]-1)  * ((f[k,1]-1) * f[k,1]^f[k,2] + 1))); \\ Daniel Suteu, Oct 24 2018
    

Formula

G.f.: Sum_{k>=1} phi(k)^2*x^k/(1 - x^k)^2, where phi(k) is the Euler totient function. - Ilya Gutkovskiy, Jan 02 2017
a(n) = Sum_{k=1..n} gcd(n, k) * phi(n / gcd(n, k)), where phi(k) is the Euler totient function. - Daniel Suteu, Jun 15 2018
a(n) = Sum_{d|n} d * phi(n/d)^2, where phi(k) is the Euler totient function. - Daniel Suteu, Jun 17 2018
Multiplicative with a(p^k) = p^(k-1) * ((p-1) * p^k + 1). - Daniel Suteu, Oct 24 2018
a(n) = Sum_{k=1..n} n/gcd(n,k)*phi(gcd(n,k))^2/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} (1 - 1/(p*(p+1))) = A065463 / 3 = 0.234814... . - Amiram Eldar, Oct 23 2022