cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A282097 Coefficients in q-expansion of (3*E_2*E_4 - 2*E_6 - E_2^3)/1728, where E_2, E_4, E_6 are the Eisenstein series shown in A006352, A004009, A013973, respectively.

Original entry on oeis.org

0, 1, 12, 36, 112, 150, 432, 392, 960, 1053, 1800, 1452, 4032, 2366, 4704, 5400, 7936, 5202, 12636, 7220, 16800, 14112, 17424, 12696, 34560, 19375, 28392, 29160, 43904, 25230, 64800, 30752, 64512, 52272, 62424, 58800, 117936, 52022, 86640, 85176, 144000, 70602
Offset: 0

Views

Author

Seiichi Manyama, Feb 06 2017

Keywords

Comments

Multiplicative because A000203 is. - Andrew Howroyd, Jul 25 2018

Examples

			a(6) = 1^3*6^2 + 2^3*3^2 + 3^3*2^2 + 6^3*1^2 = 432.
		

Crossrefs

Cf. this sequence (phi_{3, 2}), A282099 (phi_{5, 2}).
Cf. A006352 (E_2), A004009 (E_4), A013973 (E_6), A282018 (E_2^3), A282019 (E_2*E_4).
Cf. A000203 (sigma(n)), A064987 (n*sigma(n)), this sequence (n^2*sigma(n)), A282211 (n^3*sigma(n)).
Cf. A222171.

Programs

  • Magma
    [0] cat [n^2*DivisorSigma(1, n): n in [1..50]]; // Vincenzo Librandi, Mar 01 2018
  • Mathematica
    a[0]=0;a[n_]:=(n^2)*DivisorSigma[1,n];Table[a[n],{n,0,41}] (* Indranil Ghosh, Feb 21 2017 *)
    terms = 42; Ei[n_] = 1-(2n/BernoulliB[n]) Sum[k^(n-1) x^k/(1-x^k), {k, terms}]; CoefficientList[(3*Ei[2]*Ei[4] - 2*Ei[6] - Ei[2]^3)/1728 + O[x]^terms, x] (* Jean-François Alcover, Mar 01 2018 *)
  • PARI
    a(n) = if (n==0, 0, n^2*sigma(n)); \\ Michel Marcus, Feb 21 2017
    

Formula

a(n) = (3*A282019(n) - 2*A013973(n) - A282018(n))/1728.
G.f.: phi_{3, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.
a(n) = n^2*A000203(n) for n > 0. - Seiichi Manyama, Feb 19 2017
G.f.: Sum_{k>=1} k^3*x^k*(1 + x^k)/(1 - x^k)^3. - Ilya Gutkovskiy, May 02 2018
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(e+1)-1)/(p-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-3).
Sum_{k=1..n} a(k) ~ (Pi^2/24) * n^4. (End)
From Peter Bala, Jan 22 2024: (Start)
a(n) = Sum_{1 <= i, j, k <= n} sigma_2( gcd(i, j, k, n) ).
a(n) = Sum_{1 <= i, j <= n} sigma_3( gcd(i, j, n) ).
a(n) = Sum_{d divides n} sigma_2(d) * J_3(n/d) = Sum_{d divides n} sigma_3(d) * J_2(n/d), where the Jordan totient functions J_2(n) = A007434(n) and J_3(n) = A059376(n). (End)