cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007889 Number of intransitive (or alternating, or Stanley) trees: vertices are [0,n] and for no i

Original entry on oeis.org

1, 1, 2, 7, 36, 246, 2104, 21652, 260720, 3598120, 56010096, 971055240, 18558391936, 387665694976, 8787898861568, 214868401724416, 5636819806209792, 157935254554567296, 4707152127520549120, 148704074888134683520, 4963548160096887021056, 174553183413968718996736
Offset: 0

Views

Author

Alexander Postnikov [ apost(AT)math.mit.edu ]

Keywords

Comments

Number of local binary search trees (i.e. labeled binary trees such that every left child has a smaller label than its parent and every right child has a larger label than its parent) on n vertices. Example: a(3)=7 because we have 3L2L1, 2L1R3, 3L1R2, 1R2R3, 1R3L2, 2R3L1 (Li means left child labeled i, RI means right child labeled i) and root 2 with left child 1 and right child 3. - Emeric Deutsch, Nov 24 2004
Number of regions of the Linial arrangement. - Ira M. Gessel, Nov 01 2023

References

  • I. M. Gelfand, M. I. Graev and A. Postnikov, Combinatorics of hypergeometric functions associated with positive roots, in Arnold-Gelfand Mathematical Seminars: Geometry and Singularity Theory, Birkhäuser, 1997.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.41(a).

Crossrefs

Row sums of A029847.

Programs

  • Maple
    f:= n->1/(2^n*(n+1))*add(binomial(n+1, k)*k^n, k=1..(n+1)): seq(f(n), n=0..19);
  • Mathematica
    With[{nn=20},CoefficientList[Series[-2/x LambertW[-1/2x Exp[x/2]], {x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Aug 12 2011 *)
    Table[1/((n+1)2^n) Sum[Binomial[n+1,k]k^n,{k,n+1}],{n,0,20}] (* Harvey P. Dale, Apr 21 2012 *)
  • PARI
    {a(n)=local(A=1+x);for(i=0,n,A=exp(x*(1+A)/2 +x*O(x^n)));n!*polcoeff(A,n)} \\ Paul D. Hanna, Mar 29 2008
    
  • PARI
    /* Coefficients of A(x)^p are given by: */ {a(n,p=1)=(1/2^n)*sum(k=0,n,binomial(n,k)*p*(k+p)^(n-1))} \\ Vladeta Jovovic and Paul D. Hanna, Apr 03 2008
    
  • Sage
    def A007889(n) : return add(binomial(n,k)*(k+1)^(n-1) for k in (0..n))/2^n
    for n in (0..19) : print(A007889(n)) # Peter Luschny, Feb 29 2012

Formula

a(n) = (1/((n+1)*2^n))*Sum_{k=1..n+1} C(n+1,k)*k^n.
E.g.f. A(x) satisfies: A(x) = exp( x*(1 + A(x))/2 ). E.g.f. A(x) equals the inverse function of 2*log(x)/(1+x). - Paul D. Hanna, Mar 29 2008
E.g.f.: -2/x*LambertW(-1/2*x*exp(1/2*x)). - Vladeta Jovovic, Mar 29 2008
From Vladeta Jovovic and Paul D. Hanna, Apr 03 2008: (Start)
Powers of e.g.f.: If A(x)^p = Sum_{n>=0} a(n,p)*x^n/n! then a(n,p) = (1/2^n)* Sum_{k=0..n} binomial(n,k)*p*(k+p)^(n-1).
Let A(x) = e.g.f. of A007889, B(x) = e.g.f. of A138860 where B(x) = exp( x*[B(x) + B(x)^2]/2 ); then B(x) = A(x*B(x)) = (1/x)*Series_Reversion(x/A(x)) and A(x) = B(x/A(x)) = x/Series_Reversion(x*B(x)). (End)
For n>=2, a(n)=Sum_{1,...,floor(n/2)}binomial(n-1, 2k-1)*k^(n-2). [Vladimir Shevelev, Mar 21 2010]
For n>0, a(n) = A088789(n+1)*2/(n+1). [Vaclav Kotesovec, Dec 26 2011]

A349719 E.g.f. satisfies: A(x) = exp( x * (1 + 1/A(x))/2 ).

Original entry on oeis.org

1, 1, 0, 1, -4, 26, -212, 2108, -24720, 334072, -5112544, 87396728, -1650607040, 34132685120, -767025716736, 18612106195456, -485013257865472, 13509071081429888, -400505695457942528, 12592502771190979712, -418524228123134068224
Offset: 0

Views

Author

Seiichi Manyama, Nov 27 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/2^n) * Sum[If[k == n == 1, 1, (-k + 1)^(n - 1)] * Binomial[n, k], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Nov 27 2021 *)
  • PARI
    a(n) = sum(k=0, n, (-k+1)^(n-1)*binomial(n, k))/2^n;
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace((x/2)/lambertw(x/2*exp(-x/2))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(2*sum(k=0, N, (-k+1)^(k-1)*x^k/(2-(-k+1)*x)^(k+1)))

Formula

a(n) = (1/2^n) * Sum_{k=0..n} (-k+1)^(n-1) * binomial(n,k).
E.g.f.: (x/2)/LambertW( x/2 * exp(-x/2) ).
G.f.: 2 * Sum_{k>=0} (-k+1)^(k-1) * x^k/(2 - (-k+1)*x)^(k+1).
a(n) ~ -(-1)^n * sqrt(1 + LambertW(exp(-1))) * n^(n-1) / (2^n * exp(n) * LambertW(exp(-1))^(n-1)). - Vaclav Kotesovec, Dec 05 2021
Showing 1-2 of 2 results.