cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A285330 If n is squarefree, then a(n) = A048675(n), otherwise a(n) = A285328(n).

Original entry on oeis.org

0, 1, 2, 2, 4, 3, 8, 4, 3, 5, 16, 6, 32, 9, 6, 8, 64, 12, 128, 10, 10, 17, 256, 18, 5, 33, 9, 14, 512, 7, 1024, 16, 18, 65, 12, 24, 2048, 129, 34, 20, 4096, 11, 8192, 22, 15, 257, 16384, 36, 7, 40, 66, 26, 32768, 48, 20, 28, 130, 513, 65536, 30, 131072, 1025, 21, 32, 36, 19, 262144, 34, 258, 13, 524288, 54, 1048576, 2049, 45, 38, 24, 35, 2097152, 50, 27
Offset: 1

Views

Author

Antti Karttunen, Apr 19 2017

Keywords

Comments

Each n > 1 occurs exactly twice in this sequence. a(n) tells which number is located at the parent node of the node that contains n in the binary tree A285332. See further comments there.

Crossrefs

Programs

  • Mathematica
    Table[Which[n == 1, 0, MoebiusMu@ n != 0, Total@ Map[#2*2^(PrimePi@ #1 - 1) & @@ # &, FactorInteger[n]], True, With[{r = DivisorSum[n, EulerPhi[#] Abs@ MoebiusMu[#] &]}, SelectFirst[Range[n - 2, 2, -1], DivisorSum[#, EulerPhi[#] Abs@ MoebiusMu[#] &] == r &]]], {n, 81}] (* Michael De Vlieger, Dec 31 2018 *)
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ Michel Marcus, Oct 10 2016
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); };
    A285330(n) = if(moebius(n)<>0,A048675(n),A285328(n));
    
  • Scheme
    (define (A285330 n) (if (not (zero? (A008683 n))) (A048675 n) (A285328 n)))

Formula

If A008683(n) <> 0 [when n is squarefree], a(n) = A048675(n), otherwise a(n) = A285328(n).

A322818 a(n) = A001222(n) - A001222(A285328(n)), where A285328(n) gives the next smaller m that has same prime factors as n (ignoring multiplicity), or 1 if n is squarefree, and A001222 gives the number of prime factors, when counted with multiplicity.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 0, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, -1, 2, 1, 1, -1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 0, 1, 2, 3, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 0, 2, 1, 2, 2, 2, 1, 1, -1, 1, -1, 1, 3, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 27 2018

Keywords

Examples

			For n = 6 = 2*3, there is no smaller number with only the prime factors 2 and 3 as 6 is squarefree, thus A285328(6) = 1, and a(6) = A001222(6) = 2.
For n = 40 = 2^3 * 5^1, the next smaller number with the same prime factors is 20 = 2^2 * 5^1. While 40 has 3+1 = 4 prime factors in total, 20 has 2+1 = 3, thus a(40) = 4-3 = 1.
For n = 50 = 2^1 * 5^2, the next smaller number with the same prime factors is 40 = 2^3 * 5^1, thus a(50) = (1+2)-(3+1) = -1.
		

Crossrefs

Programs

  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); };
    A322818(n) = (bigomega(n)-bigomega(A285328(n)));

Formula

a(n) = A001222(n) - A001222(A285328(n)).
a(A005117(n)) = A001222(A005117(n)).

A065642 a(1) = 1; for n > 1, a(n) = Min {m > n | m has same prime factors as n ignoring multiplicity}.

Original entry on oeis.org

1, 4, 9, 8, 25, 12, 49, 16, 27, 20, 121, 18, 169, 28, 45, 32, 289, 24, 361, 40, 63, 44, 529, 36, 125, 52, 81, 56, 841, 60, 961, 64, 99, 68, 175, 48, 1369, 76, 117, 50, 1681, 84, 1849, 88, 75, 92, 2209, 54, 343, 80, 153, 104, 2809, 72, 275, 98, 171, 116, 3481, 90, 3721
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 03 2001

Keywords

Comments

After the initial 1, a permutation of the nonsquarefree numbers A013929. The array A284457 is obtained as a dispersion of this sequence. - Antti Karttunen, Apr 17 2017
Numbers such that a(n)/n is not an integer are listed in A284342.

Examples

			a(10) = a(2 * 5) = 2 * 2 * 5 = 20; a(12) = a(2^2 * 3) = 2 * 3^2 = 18.
		

Crossrefs

Cf. A285328 (a left inverse).
Cf. also arrays A284457 & A284311, A285321 and permutations A284572, A285112, A285332.

Programs

  • Haskell
    a065642 1 = 1
    a065642 n = head [x | let rad = a007947 n, x <- [n+1..], a007947 x == rad]
    -- Reinhard Zumkeller, Jun 12 2015, Jul 27 2011
    
  • Mathematica
    ffi[x_]:= Flatten[FactorInteger[x]]; lf[x_]:= Length[FactorInteger[x]]; ba[x_]:= Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; cor[x_]:= Apply[Times, ba[x]]; Join[{1}, Table[Min[Flatten[Position[Table[cor[w], {w, n+1, n^2}]-cor[n], 0]]+n], {n, 2, 100}]] (* This code is suitable since prime factor set is invariant iff squarefree kernel is invariant. *) (* G. C. Greubel, Oct 31 2018 *)
    Array[If[# == 1, 1, Function[{n, c}, SelectFirst[Range[n + 1, n^2], Times @@ FactorInteger[#][[All, 1]] == c &]] @@ {#, Times @@ FactorInteger[#][[All, 1]]}] &, 61] (* Michael De Vlieger, Oct 31 2018 *)
  • PARI
    A065642(n)={ my(r=A007947(n)); if(1==n,n, n += r; while(A007947(n) <> r, n += r); n)} \\ Antti Karttunen, Apr 17 2017
    
  • PARI
    a(n)=if(n<2, return(1)); my(f=factor(n),r,mx,mn,t); if(#f~==1, return(f[1,1]^(f[1,2]+1))); f=f[,1]; r=factorback(f); mn=mx=n*f[1]; forvec(v=vector(#f,i,[1,logint(mx/r,f[i])+1]), t=prod(i=1,#f, f[i]^v[i]); if(tn, mn=t)); mn \\ Charles R Greathouse IV, Oct 18 2017
    
  • Python
    from sympy import primefactors, prod
    def a007947(n): return 1 if n < 2 else prod(primefactors(n))
    def a(n):
        if n==1: return 1
        r=a007947(n)
        n += r
        while a007947(n)!=r:
            n+=r
        return n
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Apr 17 2017
  • Scheme
    (define (A065642 n) (if (= 1 n) n (let ((k (A007947 n))) (let loop ((n (+ n k))) (if (= (A007947 n) k) n (loop (+ n k))))))) ;; (Semi-naive implementation) - Antti Karttunen, Apr 17 2017
    

Formula

A007947(a(n)) = A007947(n); a(A007947(n)) = A007947(n) * A020639(n), where A007947 is the squarefree kernel (radical), A020639 is the least prime factor (lpf).
a(A000040(n)^k) = A000040(n)^(k+1); A001221(a(n)) = A001221(n).
A285328(a(n)) = n. - Antti Karttunen, Apr 17 2017
n < a(n) <= n*lpf(n) <= n^2. - Charles R Greathouse IV, Oct 18 2017

A008479 Number of numbers <= n with same prime factors as n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 4, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 3, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 9
Offset: 1

Views

Author

Keywords

Comments

For n > 1, a(n) gives the (one-based) index of the row where n is located in arrays A284311 and A285321 or respectively, index of the column where n is in A284457. A285329 gives the other index. - Antti Karttunen, Apr 17 2017

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    V:= Vector(N):
    V[1]:= 1:
    for n from 2 to N do
      if V[n] = 0 then
       S:= {n};
       for p in numtheory:-factorset(n) do
         S := S union {seq(seq(s*p^k,k=1..floor(log[p](N/s))),s=S)};
       od:
       S:= sort(convert(S,list));
       for k from 1 to nops(S) do V[S[k]]:= k od:
    fi
    od:
    convert(V,list); # Robert Israel, May 20 2016
  • Mathematica
    PkTbl=Prepend[ Array[ Times @@ First[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ];1+Array[ Count[ Take[ PkTbl, #-1 ], PkTbl[ [ # ] ] ]&, Length[ PkTbl ] ]
    Count[#, k_ /; k == Last@ #] & /@ Function[s, Take[s, #] & /@ Range@ Length@ s]@ Array[Map[First, FactorInteger@ #] &, 120] (* or *)
    Table[Sum[(Floor[n^k/k] - Floor[(n^k - 1)/k]) (Floor[k^n/n] - Floor[(k^n - 1)/n]), {k, n}], {n, 120}] (* Michael De Vlieger, May 20 2016 *)
  • PARI
    a(n)=my(f=factor(n)[,1], s); forvec(v=vector(#f, i, [1, logint(n, f[i])]), if(prod(i=1, #f, f[i]^v[i])<=n, s++)); s \\ Charles R Greathouse IV, Oct 19 2017
  • Scheme
    (define (A008479 n) (if (not (zero? (A008683 n))) 1 (+ 1 (A008479 (A285328 n))))) ;; Antti Karttunen, Apr 17 2017
    

Formula

a(n) = Sum_{k=1..n} (floor(n^k/k)-floor((n^k-1)/k))*(floor(k^n/n)-floor((k^n-1)/n)). - Anthony Browne, May 20 2016
If A008683(n) <> 0 [when n is squarefree, A005117], a(n) = 1, otherwise a(n) = 1+a(A285328(n)). - Antti Karttunen, Apr 17 2017
a(n) <= A010846(n), with equality if and only if n = 1. - Amiram Eldar, May 25 2025
a(m^(k+1)) = A010846(m^k) when m is squarefree. - Flávio V. Fernandes, Aug 20 2025

A285332 a(0) = 1, a(1) = 2, a(2n) = A019565(a(n)), a(2n+1) = A065642(a(n)).

Original entry on oeis.org

1, 2, 3, 4, 6, 9, 5, 8, 15, 12, 14, 27, 10, 25, 7, 16, 210, 45, 35, 18, 105, 28, 462, 81, 21, 20, 154, 125, 30, 49, 11, 32, 10659, 420, 910, 75, 78, 175, 33, 24, 3094, 315, 385, 56, 780045, 924, 374, 243, 110, 63, 55, 40, 4389, 308, 170170, 625, 1155, 60, 286, 343, 42, 121, 13, 64, 54230826, 31977, 28405, 630, 1330665, 1820, 714
Offset: 0

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
This sequence can be represented as a binary tree. Each left hand child is produced as A019565(n), and each right hand child as A065642(n), when the parent node contains n >= 2:
1
|
...................2...................
3 4
6......../ \........9 5......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
15 12 14 27 10 25 7 16
210 45 35 18 105 28 462 81 21 20 154 125 30 49 11 32
etc.
Where will 38 appear in this tree? It is a reasonable assumption that by iterating A087207 starting from 38, as A087207(38) = 129, A087207(129) = 8194, A087207(8194) = 1501199875790187, ..., we will eventually hit a prime A000040(k), most likely with a largish index k. This prime occurs at the penultimate edge at right, as a(A000918(k)) = a((2^k)-2), and thus 38 occurs somewhere below it as a(m) = 38, m > k. All the numbers that share prime factors with 38, namely 76, 152, 304, 608, 722, ..., occur similarly late in this tree, as they form the rightward branch starting from 38. Alternatively, by iterating A285330 (each iteration moves one step towards the root) starting from 38, we might instead first hit some power of 3, or say, one of the terms of A033845 (the rightward branch starting from 6), in which case the first prime encountered would be a(2)=3 and 38 would appear on the left-hand side instead of the right-hand side subtree.
As long as it remains conjecture that A019565 has no cycles, it is certainly also an open question whether this is a permutation of the natural numbers: If A019565 has any cycles, then neither any of the terms in those cycles nor any A065642-trajectories starting from those terms (that is, numbers sharing same prime factors) may occur in this tree.
Sequence exhibits some outrageous swings, for example, a(703) = 224, but a(704) is 1427 decimal digits (4739 binary digits) long, thus it no longer fits into a b-file.
However, the scatter plot of A286543 gives some flavor of the behavior of this sequence even after that point. - Antti Karttunen, Dec 25 2017

Crossrefs

Inverse: A285331.
Compare also to permutation A285112 and array A285321.

Programs

  • Mathematica
    Block[{a = {1, 2}}, Do[AppendTo[a, If[EvenQ[i], Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[a[[i/2 + 1]], 2], If[# == 1, 1, Function[{n, c}, SelectFirst[Range[n + 1, n^2], Times @@ FactorInteger[#][[All, 1]] == c &]] @@ {#, Times @@ FactorInteger[#][[All, 1]]}] &[a[[(i - 1)/2 + 1]] ] ]], {i, 2, 70}]; a] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A019565(n) = {my(j,v); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ This function from M. F. Hasler
    A007947(n) = factorback(factorint(n)[, 1]); \\ From Andrew Lelechenko, May 09 2014
    A065642(n) = { my(r=A007947(n)); if(1==n,n,n = n+r; while(A007947(n) <> r, n = n+r); n); };
    A285332(n) = { if(n<=1,n+1,if(!(n%2),A019565(A285332(n/2)),A065642(A285332((n-1)/2)))); };
    for(n=0, 4095, write("b285332.txt", n, " ", A285332(n)));
    
  • Python
    from operator import mul
    from sympy import prime, primefactors
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu
    def a065642(n):
        if n==1: return 1
        r=a007947(n)
        n = n + r
        while a007947(n)!=r:
            n+=r
        return n
    def a(n):
        if n<2: return n + 1
        if n%2==0: return a019565(a(n//2))
        else: return a065642(a((n - 1)//2))
    print([a(n) for n in range(51)]) # Indranil Ghosh, Apr 18 2017
  • Scheme
    ;; With memoization-macro definec.
    (definec (A285332 n) (cond ((<= n 1) (+ n 1)) ((even? n) (A019565 (A285332 (/ n 2)))) (else (A065642 (A285332 (/ (- n 1) 2))))))
    

Formula

a(0) = 1, a(1) = 2, a(2n) = A019565(a(n)), a(2n+1) = A065642(a(n)).
For n >= 0, a(2^n) = A109162(2+n). [The left edge of the tree.]
For n >= 0, a(A000225(n)) = A000079(n). [Powers of 2 occur at the right edge of the tree.]
For n >= 2, a(A000918(n)) = A000040(n). [And the next vertices inwards contain primes.]
For n >= 2, a(A036563(1+n)) = A001248(n). [Whose right children are their squares.]
For n >= 0, a(A055010(n)) = A000244(n). [Powers of 3 are at the rightmost edge of the left subtree.]
For n >= 2, a(A129868(n-1)) = A062457(n).
A048675(a(n)) = A285333(n).
A046523(a(n)) = A286542(n).

A079277 Largest integer k < n such that any prime factor of k is also a prime factor of n.

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 4, 3, 8, 1, 9, 1, 8, 9, 8, 1, 16, 1, 16, 9, 16, 1, 18, 5, 16, 9, 16, 1, 27, 1, 16, 27, 32, 25, 32, 1, 32, 27, 32, 1, 36, 1, 32, 27, 32, 1, 36, 7, 40, 27, 32, 1, 48, 25, 49, 27, 32, 1, 54, 1, 32, 49, 32, 25, 64, 1, 64, 27, 64, 1, 64, 1, 64, 45, 64, 49, 72, 1, 64, 27
Offset: 2

Views

Author

Istvan Beck (istbe(AT)online.no), Feb 07 2003

Keywords

Comments

The function a(n) complements Euler's phi-function: 1) a(n)+phi(n) = n if n is a power of a prime (actually, in A285710). 2) It seems also that a(n)+phi(n) >= n for "almost all numbers" (see A285709, A208815). 3) a(2n) = n+1 if and only if n is a Mersenne prime. 4) Lim a(n^k)/n^k =1 if n has at least two prime factors and k goes to infinity.
From Michael De Vlieger, Apr 26 2017: (Start)
In other words, largest integer k < n such that k | n^e with integer e >= 0.
Penultimate term of row n in A162306. (The last term of row n in A162306 is n.)
For prime p, a(p) = 1. More generally, for n with omega(n) = 1, that is, a prime power p^e with e > 0, a(p^e) = p^(e - 1).
For n with omega(n) > 1, a(n) does not divide n. If n = pq with q = p + 2, then p^2 < n though p^2 does not divide n, yet p^2 | n^e with e > 1. If n has more than 2 distinct prime divisors p, powers p^m of these divisors will appear in the range (1..n-1) such that p^m > n/lpf(n) (lpf(n) = A020639(n)). Since a(n) is the largest of these, a(n) is not a divisor of n.
If a(n) does not divide n, then a(n) appears last in row n of A272618.
(End)

Examples

			a(10)=8 since 8 is the largest integer< 10 that can be written using only the primes 2 and 5. a(78)=72 since 72 is the largest number less than 78 that can be written using only the primes 2, 3 and 13. (78=2*3*13).
		

Crossrefs

Programs

  • Mathematica
    Table[If[n == 2, 1, Module[{k = n - 2, e = Floor@ Log2@ n}, While[PowerMod[n, e, k] != 0, k--]; k]], {n, 2, 81}] (* Michael De Vlieger, Apr 26 2017 *)
  • PARI
    a(n) = {forstep(k = n - 1, 2, -1, f = factor(k); okk = 1; for (i=1, #f~, if ((n % f[i,1]) != 0, okk = 0; break;)); if (okk, return (k));); return (1);} \\ Michel Marcus, Jun 11 2013
    
  • PARI
    A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014
    A079277(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(1==n,0,k = n-1; while(A007947(k*n) <> r, k = k-1); k)); }; \\ Antti Karttunen, Apr 26 2017
    
  • Python
    from sympy import divisors
    from sympy.ntheory.factor_ import core
    def a007947(n): return max(d for d in divisors(n) if core(d) == d)
    def a(n):
        k=n - 1
        while True:
            if a007947(k*n) == a007947(n): return k
            else: k-=1
    print([a(n) for n in range(2, 101)]) # Indranil Ghosh, Apr 26 2017

Formula

Largest k < n with rad(kn) = rad(n), where rad = A007947.

A285329 a(n) = A013928(A007947(n)).

Original entry on oeis.org

0, 1, 2, 1, 3, 4, 5, 1, 2, 6, 7, 4, 8, 9, 10, 1, 11, 4, 12, 6, 13, 14, 15, 4, 3, 16, 2, 9, 17, 18, 19, 1, 20, 21, 22, 4, 23, 24, 25, 6, 26, 27, 28, 14, 10, 29, 30, 4, 5, 6, 31, 16, 32, 4, 33, 9, 34, 35, 36, 18, 37, 38, 13, 1, 39, 40, 41, 21, 42, 43, 44, 4, 45, 46, 10, 24, 47, 48, 49, 6, 2, 50, 51, 27, 52, 53, 54, 14, 55, 18, 56, 29, 57, 58, 59, 4, 60, 9, 20, 6
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

For n > 1, a(n) gives the (one-based) index of the column where n is located in array A284311, or respectively, index of the row where n is in A284457. A008479 gives the other index.

Crossrefs

Cf. A008479 (the other index).
Cf. array A284311 (A284457).

Programs

  • Python
    from operator import mul
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    from functools import reduce
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a013928(n): return sum(1 for i in range(1, n) if core(i) == i)
    print([a013928(a007947(n)) for n in range(1, 101)]) # Indranil Ghosh, Apr 18 2017
    
  • Python
    from math import prod, isqrt
    from sympy import primefactors, mobius
    def A285329(n):
        m=prod(primefactors(n))-1
        return sum(mobius(k)*(m//k**2) for k in range(1,isqrt(m)+1)) # Chai Wah Wu, May 12 2024

Formula

a(n) = A013928(A007947(n)).
Other identities. For all n >= 0:
If A008683(n) <> 0 [when n is squarefree, A005117], a(n) = A013928(n), otherwise a(n) = a(A285328(n)).
a(A019565(n)) = A064273(n).

A285331 Inverse for A285332: a(1) = 0, a(2) = 1, a(A019565(n)) = 2*a(n), a(A065642(n)) = 1 + 2*a(n).

Original entry on oeis.org

0, 1, 2, 3, 6, 4, 14, 7, 5, 12, 30, 9, 62, 10, 8, 15, 126, 19, 254, 25, 24, 252, 510, 39, 13, 76, 11, 21, 1022, 28, 2046, 31, 38, 316, 18, 79, 4094
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017, comments edited Apr 19 2017

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.
For the question whether this sequence and A285332 are permutations of natural numbers, see comments in A285332 and the conjecture stated in A019565.
As a practical problem, it seems next-to-impossible to compute even the value of a(38). Even though we know that 38 certainly is not in a finite cycle of A019565, because A048675(38) = 129, A048675(129) = 8194 and A048675(8194) = 4503599627370561 which factorizes as 3^2 * 37 * 71 * 190483425427 (thus is not squarefree and A285320(38) = 3), the value of a(38) is most likely so huge that it will not fit into the data section or even into a b-file. The same problem applies to all numbers that share prime factors with 38, namely 76, 152, 304, 608, 722, ...
Terms a(39) .. a(61) are [632, 51, 8190, 60, 16382, 505, 17, 72057594037927932, 32766, 159, 29, 103, 1016, 153, 65534, 319, 50, 43, 16376, 131014, 131070, 57, 262142].
The name is slightly misleading. The given definition of a(n) is not always very helpful to compute the terms (cf. example of n = 38), it is actually not clear whether the sequence is well defined. - M. F. Hasler, Mar 01 2018

Examples

			a(1) = 0 and a(2) = 1 by definition.
a(3) = a(prime(2)) = a(A019565(2^1)) = 2*a(2) = 2.
a(4) = a(2^2) = a(A065642(2)) = 1 + 2*a(2) = 3.
a(5) = a(prime(3)) = a(A019565(2^2)) = 2*a(4) = 6.
a(9) = a(3^2) = a(A065642(3)) = 1 + 2*a(3) = 5.
a(10) = a(2*5) = a(prime(1)*prime(3)) = a(A019565(2^0+2^2)) = 2*a(1+4) = 12.
To compute a(38), write 38 = prime(1)*prime(8) = A019565(2^7+2^0), so a(38) = 2*a(129). To compute this, use 129 = prime(2)*prime(14) = A019565(2^13+2^1), so a(129) = 2*a(8194). But 8194 = prime(1)*prime(7)*prime(53) = A019565(2^0+2^6+2^52), so a(8194) = 2*a(4503599627370561)...
		

Crossrefs

Inverse: A285332.
Compare also to permutation A285111.

Programs

Formula

a(1) = 0, a(2) = 1, and for n > 2, if A008683(n) <> 0 [when n is squarefree], a(n) = 2*a(A048675(n)), otherwise a(n) = 1 + 2*a(A285328(n)).
For all n >= 0, a(A285332(n)) = n.

A322807 Lexicographically earliest such sequence a that a(i) = a(j) => f(i) = f(j) for all i, j, where f(n) = -1 if n is an odd prime, and f(n) = A285330(n) for all other numbers.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 5, 7, 3, 8, 3, 9, 8, 10, 3, 11, 3, 12, 12, 13, 3, 14, 7, 15, 9, 16, 3, 17, 3, 18, 14, 19, 11, 20, 3, 21, 22, 23, 3, 24, 3, 25, 26, 27, 3, 28, 17, 29, 30, 31, 3, 32, 23, 33, 34, 35, 3, 36, 3, 37, 38, 39, 28, 40, 3, 22, 41, 42, 3, 43, 3, 44, 45, 46, 20, 47, 3, 48, 49, 50, 3, 51, 52, 53, 54, 55, 3, 56, 29, 57, 58, 59, 60, 61, 3, 62, 15
Offset: 1

Views

Author

Antti Karttunen, Dec 26 2018

Keywords

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    A048675(n) = my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; \\ From A048675
    A285328(n) = { my(r); if((n > 1 && !bitand(n,(n-1))), (n/2), r=A007947(n); if(r==n,1,n = n-r; while(A007947(n) <> r, n = n-r); n)); };
    A285330(n) = if(issquarefree(n),A048675(n),A285328(n));
    A322807aux(n) = if((n%2)&&isprime(n),-1,A285330(n));
    v322807 = rgs_transform(vector(up_to,n,A322807aux(n)));
    A322807(n) = v322807[n];

A285111 Permutation of nonnegative integers: a(1) = 0, a(2) = 1, a(A005117(1+n)) = 2*a(n), a(A065642(n)) = 1 + 2*a(n).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 7, 5, 12, 16, 13, 14, 10, 24, 15, 32, 27, 26, 25, 28, 20, 48, 55, 9, 30, 11, 21, 64, 54, 52, 31, 50, 56, 40, 111, 96, 110, 18, 51, 60, 22, 42, 41, 49, 128, 108, 223, 17, 103, 104, 61, 62, 447, 100, 43, 112, 80, 222, 109, 192, 220, 57, 63, 36, 102, 120, 113, 44, 84, 82, 895, 98, 256, 99, 221, 216, 446, 34, 207, 23
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2017

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Inverse: A285112.
Similar or related permutations: A243343, A243345, A277695, A284571.

Programs

  • Python
    from operator import mul
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    from functools import reduce
    def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n))
    def a285328(n):
        if core(n) == n: return 1
        k=n - 1
        while k>0:
            if a007947(k) == a007947(n): return k
            else: k-=1
    def a013928(n): return sum([1 for i in range(1, n) if core(i) == i])
    def a(n):
        if n<3: return n - 1
        if core(n)==n: return 2*a(a013928(n))
        else: return 1 + 2*a(a285328(n))
    print([a(n) for n in range(1, 121)]) # Indranil Ghosh, Apr 17 2017

Formula

a(1) = 0, a(2) = 1, and for n > 2, if A008683(n) <> 0 [when n is squarefree], a(n) = 2*a(A013928(n)), otherwise a(n) = 1 + 2*a(A285328(n)).
Showing 1-10 of 15 results. Next