cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A156616 G.f.: Product_{n>0} ((1+x^n)/(1-x^n))^n.

Original entry on oeis.org

1, 2, 6, 16, 38, 88, 196, 420, 878, 1794, 3584, 7032, 13572, 25792, 48352, 89512, 163774, 296444, 531234, 943072, 1659560, 2896376, 5015700, 8622108, 14718652, 24960138, 42062200, 70458160, 117349856, 194381704, 320295312, 525123604
Offset: 0

Views

Author

R. J. Mathar, Feb 11 2009

Keywords

Comments

Generating function for a sum over strict plane partitions weighted with 2 powered to their number of connected components.
The inverse Euler transform is apparently 2, 3, 6, 6, 10, 9, 14, 12, 18, 15, 22, 18, 26, 21, ..., A016825 interlaced with A008585. - R. J. Mathar, Apr 23 2009
In general, for m >= 1, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(m*k), then a(n) ~ exp(m/12 + 3/2 * (7*m*Zeta(3)/2)^(1/3) * n^(2/3)) * m^(1/6 + m/36) * (7*Zeta(3))^(1/6 + m/36) / (A^m * 2^(2/3 + m/9) * sqrt(3*Pi) * n^(2/3 + m/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 17 2015
In general, for m >= 0, if g.f. = Product_{k>=1} ((1+x^k)/(1-x^k))^(k^m), then a(n) ~ ((2^(m+2)-1) * Gamma(m+2) * Zeta(m+2) / (2^(2*m+3) * n))^((1-2*Zeta(-m))/(2*m+4)) * exp((m+2)/(m+1) * ((2^(m+2)-1) * n^(m+1) * Gamma(m+2) * Zeta(m+2) / 2^(m+1))^(1/(m+2)) + Zeta'(-m)) / sqrt((m+2)*Pi*n). - Vaclav Kotesovec, Aug 19 2015

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(sigma(2*m,2)-sigma(m,2))/2*x^m/m)+x*O(x^n)),n)} \\ Paul D. Hanna, May 01 2010

Formula

Convolve A000219 with A026007.
O.g.f.: exp( Sum_{n>=1} (sigma_2(2n) - sigma_2(n))/2 *x^n/n ), where sigma_2(n) is the sum of squares of divisors of n (A001157). - Paul D. Hanna, May 01 2010
a(n) ~ exp(1/12 + 3 * 2^(-4/3) * (7*Zeta(3))^(1/3) * n^(2/3)) * (7*Zeta(3))^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 17 2015
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A076577(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 30 2017
G.f.: A(x) = exp( 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 - x^(2*n+1))^2) ). Cf. A000122 and A302237. - Peter Bala, Dec 23 2021

A285447 Expansion of Product_{k>=1} ((1 + x^(3*k)) / (1 - x^k))^k.

Original entry on oeis.org

1, 1, 3, 7, 14, 27, 56, 101, 190, 347, 617, 1082, 1895, 3230, 5490, 9226, 15332, 25259, 41356, 67021, 107989, 172789, 274613, 433815, 681650, 1064661, 1654739, 2559029, 3938438, 6033967, 9205152, 13982675, 21156174, 31886290, 47879210, 71636483, 106814323
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^(3*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 2^(-4/3) * 3^(2/3) * (13*Zeta(3))^(1/3) * n^(2/3)) * (13*Zeta(3))^(7/36) / (A * 2^(7/9) * 3^(25/36) * sqrt(Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A285461 Expansion of Product_{k>=1} ((1 + x^(5*k)) / (1 - x^k))^k.

Original entry on oeis.org

1, 1, 3, 6, 13, 25, 49, 89, 166, 295, 526, 909, 1571, 2657, 4475, 7432, 12257, 20000, 32436, 52126, 83285, 132057, 208221, 326202, 508372, 787777, 1214828, 1863932, 2847020, 4328765, 6554359, 9882795, 14843999, 22210386, 33112817, 49192218, 72834243
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Comments

In general, if m >= 1 and g.f. = Product_{k>=1} ((1 + x^(m*k)) / (1 - x^k))^k, then a(n, m) ~ exp(1/12 + 3 * 2^(-4/3) * (4 + 3/m^2)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * (4 + 3/m^2)^(7/36) * Zeta(3)^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

Crossrefs

Cf. A156616 (m=1), A285462 (m=2), A285447 (m=3), A285460 (m=4).
Cf. A024789.

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^(5*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 3 * 2^(-4/3) * 5^(-2/3) * (103*Zeta(3))^(1/3) * n^(2/3)) * (103*Zeta(3))^(7/36) / (A * 2^(7/9) * 5^(7/18) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A285462 Expansion of Product_{k>=1} ((1 + x^(2*k)) / (1 - x^k))^k.

Original entry on oeis.org

1, 1, 4, 7, 18, 32, 72, 127, 257, 454, 861, 1497, 2719, 4654, 8171, 13781, 23564, 39159, 65559, 107455, 176712, 286000, 463200, 740910, 1184123, 1873656, 2959376, 4636145, 7245680, 11246590, 17409731, 26792371, 41114202, 62769820, 95553779, 144803917
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^(2*k))/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 3 * (19*Zeta(3))^(1/3) * n^(2/3) / 4) * (19*Zeta(3))^(7/36) / (A * 2^(7/6) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A285472 Expansion of Product_{k>=1} ((1 + x^(4*k)) / (1 - x^k)).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 18, 28, 38, 55, 74, 106, 140, 192, 253, 342, 444, 588, 758, 992, 1267, 1634, 2072, 2650, 3334, 4218, 5276, 6627, 8234, 10262, 12682, 15708, 19308, 23764, 29070, 35597, 43340, 52792, 64008, 77622, 93724, 113160, 136124, 163712, 196225
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Comments

a(n) is the number of overpartitions wherein only parts that are a multiple of four may be overlined. - Alois P. Heinz, Feb 03 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(irem(i, 4)=0, 2, 1)*add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..45);  # Alois P. Heinz, Feb 03 2025
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(4*k))/(1-x^k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(3) * exp(sqrt(3*n)*Pi/2) / (16*n).
Showing 1-5 of 5 results.