cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A014787 Expansion of Jacobi theta constant (theta_2/2)^12.

Original entry on oeis.org

1, 12, 66, 232, 627, 1452, 2982, 5544, 9669, 16016, 25158, 38160, 56266, 80124, 111816, 153528, 205260, 270876, 353870, 452496, 574299, 724044, 895884, 1103520, 1353330, 1633500, 1966482, 2360072, 2792703, 3299340, 3892922, 4533936, 5273841, 6134448
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as the sum of 12 triangular numbers from A000217.

Examples

			a(2) = (A001160(7) - A000735(3))/256 = (16808 - (-88))/256 = 66. - _Wolfdieter Lang_, Jan 13 2017
		

Crossrefs

Column k=12 of A286180.
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Formula

From Wolfdieter Lang, Jan 13 2017: (Start)
G.f.: 12th power of g.f. for A010054.
a(n) = (A001160(2*n+3) - A000735(n+1))/256. See the Ono et al. link, case k=12, Theorem 7. (End)
a(0) = 1, a(n) = (12/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 12*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

Extensions

More terms from Seiichi Manyama, May 05 2017

A014809 Expansion of Jacobi theta constant (theta_2/2)^24.

Original entry on oeis.org

1, 24, 276, 2048, 11178, 48576, 177400, 565248, 1612875, 4200352, 10131156, 22892544, 48897678, 99448320, 193740408, 363315200, 658523925, 1157743824, 1980143600, 3303168000, 5386270686, 8602175744, 13477895856, 20748607488, 31425764410, 46883528256, 68969957700
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as the sum of 24 triangular numbers from A000217.

Crossrefs

Column k=24 of A286180.
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.

Programs

  • Mathematica
    a[n_] := Module[{e = IntegerExponent[n+3, 2]}, (2^(11*e) * DivisorSigma[11, (n+3)/2^e] - RamanujanTau[n+3] - 2072 * If[OddQ[n], RamanujanTau[(n+3)/2], 0]) / 176896]; Array[a, 27, 0] (* Amiram Eldar, Jan 11 2025 *)

Formula

From Wolfdieter Lang, Jan 13 2017: (Start)
G.f.: 24th power of the g.f. for A010054.
a(n) = (A096963(n+3) - tau(n+3) - 2072*tau((n+3)/2))/176896, with Ramanujan's tau function given in A000594, and tau(n) is put to 0 if n is not integer. See the Ono et al. link, case k=24, Theorem 8. (End)
a(n) = 1/72 * Sum_{a, b, x, y > 0, a*x + b*y = n + 3, x == y == 1 mod 2 and a > b} (a*b)^3*(a^2 - b^2)^2. - Seiichi Manyama, May 05 2017
a(0) = 1, a(n) = (24/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
G.f.: exp(Sum_{k>=1} 24*(x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Jul 31 2017

Extensions

More terms from Seiichi Manyama, May 05 2017

A106337 Number of ways of writing n as the sum of n triangular numbers.

Original entry on oeis.org

1, 1, 1, 4, 13, 31, 82, 253, 757, 2173, 6341, 18888, 56266, 167324, 499773, 1499059, 4503557, 13546893, 40824379, 123233868, 372472353, 1127080252, 3414310032, 10353722919, 31425764410, 95463814056, 290222666436, 882954212908, 2688037654049, 8188468874808
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2005

Keywords

Comments

Number of compositions of n into n triangular numbers with 0's allowed. a(3) = 4: [1,1,1], [0,0,3], [0,3,0], [3,0,0]. - Alois P. Heinz, Jul 31 2017
The radius of convergence is equal to A106335. - Vaclav Kotesovec, Nov 15 2017

Examples

			G106336(x) = exp(x + 1/2*x^2 + 4/3*x^3 + 13/4*x^4 + 31/5*x^5 +...).
G106336(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 +...+ A106336(n)*x^n +...
G106336(x) = 1 + x*G106336(x) + (x*G106336(x))^3 + (x*G106336(x))^6 +...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1,
          add(`if`(issqr(8*j+1), x*b(n-j), 0), j=1..n)))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*binomial(n, i), i=0..n))(b(n)):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 31 2017
  • Mathematica
    QP = QPochhammer; a[0] = 1; a[n_] := SeriesCoefficient[(QP[-1, x]*QP[x^2]/2 )^n, {x, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 04 2017 *)
  • PARI
    {a(n)=local(X); if(n<1,1,X=x+x*O(x^n); polcoeff(eta(X^2)^(2*n)/eta(X)^n,n))}

Formula

Log.g.f.: Sum_{n>=1} a(n)/n*x^n = log(G106336(x)), where G106336(x) is the g.f. of A106336 and satisfies: Sum_{n>=0} (x*G106336(x))^(n*(n+1)/2) = G106336(x).
a(n) = [x^n] Product_{j=1..n} (1+x^j-x^(2*j)-x^(3*j))^n. - Alois P. Heinz, Aug 01 2017

Extensions

a(0) changed to 1 by Alois P. Heinz, Jul 31 2017

A290429 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 4, 3, 0, 1, 0, 1, 5, 6, 1, 2, 0, 0, 1, 6, 10, 4, 3, 2, 0, 0, 1, 7, 15, 10, 5, 6, 0, 0, 0, 1, 8, 21, 20, 10, 12, 3, 0, 0, 0, 1, 9, 28, 35, 21, 21, 12, 0, 1, 0, 0, 1, 10, 36, 56, 42, 36, 30, 4, 3, 0, 1, 0, 1, 11, 45, 84, 78, 63, 61, 20, 6, 3, 2, 0, 0, 1, 12, 55, 120, 135, 112, 112, 60, 15, 12, 3, 2, 0, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 31 2017

Keywords

Comments

A(n,k) is the number of ways of writing n as a sum of k tetrahedral (or triangular pyramidal) numbers (A000292).

Examples

			Square array begins:
1,  1,  1,  1,   1,   1,  ...
0,  1,  2,  3,   4,   5,  ...
0,  0,  1,  3,   6,  10,  ...
0,  0,  0,  1,   4,  10,  ...
0,  1,  2,  3,   5,  10,  ...
0,  0,  2,  6,  12,  21,  ...
		

Crossrefs

Cf. A000007 (column 0), A023533 (column 1), A282172 (column 5).
Main diagonal gives A303170.
Similar to, but different from, A045847.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[x^(i (i + 1) (i + 2)/6), {i, 0, n}]^k, {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column k: (Sum_{j>=0} x^(j*(j+1)*(j+2)/6))^k.

A014805 Expansion of Jacobi theta constant (theta_2/2)^16.

Original entry on oeis.org

1, 16, 120, 576, 2060, 6048, 15424, 35200, 73518, 143280, 263584, 461376, 775160, 1256928, 1973760, 3017088, 4503557, 6572880, 9411984, 13249280, 18340932, 25034976, 33739520, 44879616, 59057510, 76949920, 99212352, 126838080, 160884264, 202296960, 252645376
Offset: 0

Views

Author

Keywords

Comments

Number of ways of writing n as the sum of 16 triangular numbers from A000217. - Seiichi Manyama, May 05 2017

Crossrefs

Column k=16 of A286180.

Formula

a(n) = 1/192 * Sum_{a, b, x, y > 0, a*x + b*y = 2*n + 4, a == b == x == y == 1 mod 2 and a > b} a*b*(a^2 - b^2)^2. - Seiichi Manyama, May 05 2017
a(0) = 1, a(n) = (16/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017

Extensions

More terms from Seiichi Manyama, May 05 2017

A014806 Expansion of Jacobi theta constant (theta_2/2)^20.

Original entry on oeis.org

1, 20, 190, 1160, 5225, 18924, 58350, 158840, 391020, 886540, 1877676, 3753640, 7140485, 13014240, 22846170, 38794448, 63969485, 102744780, 161143180, 247386480, 372472353, 550858280, 801535160, 1148976360, 1624208445, 2266848372, 3126467670, 4264095520
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=20 of A286180.

Formula

a(0) = 1, a(n) = (20/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017

Extensions

More terms from Seiichi Manyama, May 06 2017

A287990 Expansion of Jacobi theta constant (theta_2/2)^36.

Original entry on oeis.org

1, 36, 630, 7176, 60165, 398412, 2184078, 10255320, 42321942, 156590980, 527649912, 1639560888, 4745867595, 12904341336, 33190117110, 81222775680, 190066236318, 427113304920, 925107172122, 1937505253320, 3934709716500, 7767340567380, 14937197788890
Offset: 0

Views

Author

Seiichi Manyama, Jun 04 2017

Keywords

Comments

Number of ways of writing n as the sum of 36 triangular numbers.

Examples

			5*1 + 3*1 + 1*3 = 7*1 + 3*1 + 1*1 = 2 + 9. So a(1) = (5*3*1*((25-9)*(25-1)*(9-1))^2 + 7*3*1*((49-9)*(49-1)*(9-1))^2) / 141557760 = 36.
		

Crossrefs

Column k=36 of A286180.
Cf. A008438 (k=4*1^2), A014805 (k=4*2^2), this sequence (k=4*3^2).

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(a(n-j)*add(
          36*d*(-1)^d, d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jun 23 2018
  • Mathematica
    A002129[n_] := DivisorSum[n, -(-1)^#*#&];
    a[n_] := a[n] = If[n == 0, 1, (36/n)*Sum[A002129[k]*a[n-k], {k, 1, n}]];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 17 2022 *)

Formula

a(0) = 1, a(n) = (36/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0.
a(n) = 1/141557760 * Sum_{a, b, c, x, y, z > 0, a*x + b*y + c*z = 2*n + 9, a == b == c == x == y == z == 1 mod 2 and a > b > c} a*b*c*((a^2 - b^2)*(a^2 - c^2)*(b^2 - c^2))^2.
Euler transform of [36, -36, 36, -36, 36, -36, ...]. - Simon Plouffe, Jun 23 2018

A287991 Expansion of Jacobi theta constant (theta_2/2)^48.

Original entry on oeis.org

1, 48, 1128, 17344, 196836, 1764192, 13051008, 82244736, 452197434, 2210431056, 9753024192, 39328459968, 146436844568, 507826976160, 1652238451200, 5074887938688, 14794635174459, 41126600601168, 109456398969568, 279899944411776, 689873759134308
Offset: 0

Views

Author

Seiichi Manyama, Jun 04 2017

Keywords

Comments

Number of ways of writing n as the sum of 48 triangular numbers.

Examples

			4*1 + 2*1 + 1*1 = 1 + 6. So a(1) = (4*2*1)^3*((16-1)*(16-4)*(4-1))^2 / 3110400 = 48.
		

Crossrefs

Column k=48 of A286180.
Cf. A007331 (k=4*1*2), A014809 (k=4*2*3), this sequence (k=4*3*4).

Programs

  • Mathematica
    a002129[n_]:=-Sum[(-1)^d*d, {d, Divisors[n]}]; a[n_]:=a[n]=If[n==0, 1, 48 Sum[a002129[k] a[n - k], {k, n}]/n]; Table[a[n], {n, 0, 100}] (* Indranil Ghosh, Aug 02 2017 *)
  • Python
    from sympy import divisors
    from sympy.core.cache import cacheit
    def a002129(n): return -sum((-1)**d*d for d in divisors(n))
    @cacheit
    def a(n): return 1 if n==0 else 48*sum(a002129(k)*a(n - k) for k in range(1, n + 1))//n
    print([a(n) for n in range(101)]) # Indranil Ghosh, Aug 02 2017

Formula

a(0) = 1, a(n) = (48/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0.
a(n) = 1/3110400 * Sum_{a, b, c, x, y, z > 0, a*x + b*y + c*z = n + 6, x == y == z == 1 mod 2 and a > b > c} (a*b*c)^3*((a^2 - b^2)*(a^2 - c^2)*(b^2 - c^2))^2.
G.f.: exp(48*Sum_{k>=1} (x^k/k)/(1 + x^k)). - Ilya Gutkovskiy, Aug 02 2017
Showing 1-8 of 8 results.