cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A059020 Number of 2 X n checkerboards (with at least one red square) in which the set of red squares is edge connected.

Original entry on oeis.org

0, 3, 13, 40, 108, 275, 681, 1664, 4040, 9779, 23637, 57096, 137876, 332899, 803729, 1940416, 4684624, 11309731, 27304157, 65918120, 159140476, 384199155, 927538873, 2239276992, 5406092952, 13051462995, 31509019045, 76069501192, 183648021540, 443365544387
Offset: 0

Views

Author

John W. Layman, Dec 14 2000

Keywords

Comments

In other words, the number of connected (non-null) induced subgraphs in the n-ladder graph P_2 X P_n. - Eric W. Weisstein, May 02 2017
Also, the number of cycles in the grid graph P_3 X P_{n+1}. - Andrew Howroyd, Jun 12 2017

Crossrefs

Row 2 of A287151 and row 2 of A231829.
See also A059021, A059524.
Cf. A000129. - Jaume Oliver Lafont, Sep 28 2009
Other sequences counting connected induced subgraphs: A020873, A059525, A286139, A286182, A286183, A286184, A286185, A286186, A286187, A286188, A286189, A286191, A285765, A285934, A286304.

Programs

  • Magma
    I:=[0, 3, 13, 40];[n le 4 select I[n] else 4*Self(n-1) - 4*Self(n-2) + Self(n-4):n in [1..30]]; // Marius A. Burtea, Aug 25 2019
  • Mathematica
    Join[{0},LinearRecurrence[{4, -4, 0, 1}, {3, 13, 40, 108}, 20]] (* Eric W. Weisstein, May 02 2017 *) (* adapted by Vincenzo Librandi, May 09 2017 *)
    Table[(LucasL[n + 3, 2] - 8 n - 14)/4, {n, 0, 20}] (* Eric W. Weisstein, May 02 2017 *)

Formula

a(n) = 2*a(n-1) + a(n-2) + 4*n - 1.
From Jaume Oliver Lafont, Nov 23 2008: (Start)
a(n) = 3*a(n-1) - a(n-2) - a(n-3) + 4;
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-4). (End)
G.f.: x*(3+x)/((1-2*x-x^2)*(1-x)^2). - Jaume Oliver Lafont, Sep 28 2009
Empirical observations (from Superseeker):
(1) if b(n) = a(n) + n then {b(n)} is A048777;
(2) if b(n) = a(n+3) - 3*a(n+2) - 3*a(n+1) + a(n) then {b(n)} is A052542;
(3) if b(n) = a(n+2) - 2*a(n+1) + a(n) then {b(n)} is A001333.
4*a(n) = A002203(n+3) - 8*n - 14. - Eric W. Weisstein, May 02 2017
a(n) = 3*A048776(n-1) + A048776(n-2). - R. J. Mathar, May 12 2019
E.g.f.: (1/2)*exp(x)*(-7-4*x+7*cosh(sqrt(2)*x)+5*sqrt(2)*sinh(sqrt(2)*x)). - Stefano Spezia, Aug 25 2019

A290756 Number of (non-null) connected induced subgraphs of the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

7, 60, 499, 4062, 32689, 261972, 2096791, 16776474, 134216221, 1073738784, 8589928483, 68719464486, 549755789353, 4398046461996, 35184371990575, 281474976514098, 2251799813292085, 18014398508695608, 144115188074283067, 1152921504603701310
Offset: 1

Views

Author

Eric W. Weisstein, Aug 09 2017

Keywords

Comments

The only disconnected induced subgraphs are those constructed from the vertices of a single partition. - Andrew Howroyd, Aug 10 2017

Crossrefs

Cf. A286191.

Programs

  • Mathematica
    Table[8^n - 3 2^n + 3 n + 2, {n, 20}]
    LinearRecurrence[{12, -37, 42, -16}, {7, 60, 499, 4062}, 20]
    CoefficientList[Series[(7 - 24 x + 38 x^2)/((-1 + x)^2 (1 - 10 x + 16 x^2)), {x, 0, 20}], x]
  • PARI
    a(n) = 8^n - 3*2^n + 3*n + 2; \\ Andrew Howroyd, Aug 10 2017

Formula

a(n) = 8^n - 3*2^n + 3*n + 2. - Andrew Howroyd, Aug 10 2017
a(n) = 12*a(n-1) - 37*a(n-2) + 42*a(n-3) - 16*a(n-4).
G.f.: (x (7 - 24 x + 38 x^2))/((-1 + x)^2 (1 - 10 x + 16 x^2)).

Extensions

a(7)-a(20) from Andrew Howroyd, Aug 10 2017
Showing 1-2 of 2 results.