cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A049302 Numbers k such that k is a substring of 4^k.

Original entry on oeis.org

6, 10, 17, 25, 36, 42, 50, 59, 60, 61, 72, 73, 78, 79, 81, 84, 86, 87, 89, 92, 93, 95, 96, 160, 200, 212, 222, 225, 227, 239, 260, 261, 269, 290, 291, 296, 300, 301, 304, 311, 313, 315, 324, 326, 327, 330, 336, 344, 345, 348, 350, 355, 362, 372, 378, 379, 381
Offset: 1

Views

Author

Keywords

Crossrefs

A320930 Numbers k such that 4^k starts with k.

Original entry on oeis.org

10, 17, 556, 1771, 4695, 38537, 56969, 345797, 141419115, 1788191728
Offset: 1

Views

Author

Robert Israel, Oct 24 2018

Keywords

Examples

			4^10 = 1048576 starts with 10, so 10 is in the sequence.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t, b;
      t:= 4^n;
    b:= ilog10(t) - ilog10(n);
    floor(t/10^b) = n
    end proc:
    select(filter, [$1..10^5]);
  • Python
    def afind(limit, startk=1):
        k, pow4 = startk, 4**startk
        for k in range(startk, limit+1):
            if str(pow4).startswith(str(k)):
                print(k, end=", ")
            pow4 *= 4
    afind(10**4) # Michael S. Branicky, Oct 17 2021

Extensions

a(8)-a(10) from Giovanni Resta, Oct 25 2018

A306686 Values of n such that 9^n ends in n, or expomorphic numbers relative to "base" 9.

Original entry on oeis.org

9, 89, 289, 5289, 45289, 745289, 2745289, 92745289, 392745289, 7392745289, 97392745289, 597392745289, 7597392745289, 87597392745289, 8087597392745289, 48087597392745289, 748087597392745289, 10748087597392745289, 610748087597392745289, 5610748087597392745289
Offset: 1

Views

Author

Bernard Schott, Mar 05 2019

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial zeros) k(n) is expomorphic relative to base b (here 9) if k(n) has exactly n decimal digits and if b^k(n) == k(n) (mod 10^n) or, equivalently, b^k(n) ends in k(n). [See Crux Mathematicorum link.]
For sequences in the OEIS, no term is allowed to begin with a digit 0 (except for the 1-digit number 0 itself). However, in the problem as defined in the Crux Mathematicorum article, leading 0 digits are allowed; under that definition a(n) = k(n) until the first k(n) which begins with digit 0. When k(n) begins with 0, then, a(n) is the next term of the sequence k(n) which doesn't begin with digit 0.
Conjecture: if k(n) is expomorphic relative to "base" b, then, the next one in the sequence, k(n+1), consists of the last n+1 digits of b^k(n).
a(n) is the backward concatenation of A133619(0) through A133619(n-1). So, a(1) = 9, a(2) = 89 and so on, with recognition of the former comments about the OEIS and terms beginning with 0. - Davis Smith, Mar 07 2019

Examples

			9^9 = 387420489 ends in 9, so 9 is a term; 9^89 = .....289 ends in 89, so 89 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A306570 (base 5), A290788 (base 6), A321970 (base 7), A289138 (smallest expomorphic number in base n).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).
Cf. A133619 (leading digits).

Programs

  • PARI
    tetrmod(b, n, m)=my(t=b); for(i=1, n, if(i>1, t=lift(Mod(b,m)^t), t)); t
    for(n=1, 21,if(tetrmod(9,n,10^n)!=tetrmod(9,n-1,10^(n-1)),print1(tetrmod(9,n,10^(n-1)),", "))) \\ Davis Smith, Mar 09 2019

Extensions

a(8)-a(20) from Davis Smith, Mar 07 2019

A289138 a(n) = smallest expomorphic number in base n: least integer k such that n^k ends in k, or 0 if no such k exists.

Original entry on oeis.org

1, 36, 7, 6, 5, 6, 3, 56, 9, 0, 1, 16, 7, 6, 5, 6, 3, 76, 9, 0, 1, 96, 7, 6, 5, 6, 3, 96, 9, 0, 1, 76, 7, 6, 5, 6, 3, 16, 9, 0, 1, 56, 7, 6, 5, 6, 3, 36, 9, 0, 1, 36, 7, 6, 5, 6, 3, 56, 9, 0, 1, 16, 7, 6, 5, 6, 3, 76, 9, 0, 1, 96, 7, 6, 5, 6, 3, 96, 9, 0, 1, 76, 7, 6, 5, 6, 3, 16, 9, 0, 1, 56, 7, 6, 5, 6, 3, 36, 9, 0
Offset: 1

Views

Author

Keywords

Comments

Definition: For positive integers b (the base) and n, the positive integer (allowing initial zeros) a(n) is expomorphic relative to base b if a(n) has exactly n decimal digits and if b^a(n) == a(n) (mod 10^n) or, equivalently, b^a(n) ends in a(n). [See Crux Mathematicorum link.]
The only twelve values a(n) can take are 0, 1, 3, 5, 6, 7, 9, 16, 36, 56, 76 and 96;
and the percentages of the time these occur are 10, 10, 10, 10, 20, 10, 10, 4, 4, 4, 4 and 4, respectively.
The bases, n, for which k is:
0: n == 0 (mod 10)
1: n == 1 (mod 10)
3: n == 7 (mod 10)
5: n == 5 (mod 10)
6: n == 4 or 6 (mod 10)
7: n == 3 (mod 10)
9: n == 9 (mod 10)
16: n == +/- 12 (mod 50)
36: n == +/- 2 (mod 50)
56: n == +/- 8 (mod 50)
76: n == +/- 18 (mod 50)
96: n == +/- 22 (mod 50).
Periodicity is 50.

Examples

			a(4) is 6 since 4^6 = 4096 which ends in 6.
		

Crossrefs

Cf. A288845.

Programs

  • Maple
    f:= proc(n) local k;
       if n mod 10 = 0 then return 0 fi;
       for k from 1 do if n^k - k mod 10^(1+ilog10(k)) = 0 then return k fi od
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 07 2017
  • Mathematica
    f[n_] := If[ Mod[n, 10] > 0, Block[{k = 1}, While[ PowerMod[n, k, 10^IntegerLength[k]] != k, k++]; k], 0]; Array[f, 88]
  • Python
    def a(n):
        if n%10==0: return 0
        k=1
        while pow(n, k, 10**len(str(k)))!=k: k+=1
        return k
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 29 2017

A306570 Values of n such that 5^n ends in n, or expomorphic numbers relative to "base" 5.

Original entry on oeis.org

5, 25, 125, 3125, 203125, 8203125, 408203125, 8408203125, 18408203125, 618408203125, 2618408203125, 52618408203125, 152618408203125, 3152618408203125, 93152618408203125, 493152618408203125, 7493152618408203125, 17493152618408203125, 117493152618408203125, 7117493152618408203125, 87117493152618408203125
Offset: 1

Views

Author

Bernard Schott, Feb 24 2019

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial zeros) k(n) is expomorphic relative to base b (here 5) if k(n) has exactly n decimal digits and if b^k(n) == k(n) (mod 10^n) or, equivalently, b^k(n) ends in k(n). [See Crux Mathematicorum link.]
For sequences in the OEIS, no term is allowed to begin with a digit 0 (except for the 1-digit number 0 itself). However, in the problem as defined in the Crux Mathematicorum article, leading 0 digits are allowed; under that definition a(n) = k(n) until the first k(n) which begins with digit 0. When k(n) begins with 0, then, a(n) is the next term of the sequence k(n) which doesn't begin with digit 0.
Under that definition, the term after a(4) = 3125 is not "03125" but a(5) = 203125. [Comments from Jon E. Schoenfield in A288845 and discussion with Rémy Sigrist]
Conjecture: if k(n) is expomorphic relative to "base" b, then, the next one in the sequence, k(n+1), consists of the last n+1 digits of b^k(n).
a(n) is the backward concatenation of A133615(0) through A133615(n-1). So, a(1) is 5, a(2) is 25, and so on, with recognition of the comments about the OEIS and terms beginning with 0 (for example, when n = 5, A133615(n-1) = 0, so the next nonzero digit is concatenated as well, reducing the amount subtracted from n by 1). - Davis Smith Mar 07 2019

Examples

			5^5 = 25 ends in 5, so 5 is a term; 5^25 = ...125 ends in 25, so 25 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A290788 (base 6), A321970 (base 7), A306686 (base 9), A289138 (smallest expomorphic number in base n).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).
Cf. A133615 (leading digits).

Programs

  • PARI
    is(n) = my(t=#digits(n)); lift(Mod(5, 10^t)^n)==n
    for(n=1, oo, my(x=n*5); if(lift(Mod(5, 10)^x)==x%10, if(is(x), print1(x, ", ")))) \\ Felix Fröhlich, Feb 24 2019
    
  • PARI
    tetrmod(b,n,m)=my(t=b); for(i=1, n, if(i>1, t=lift(Mod(b,m)^t), t)); t
    for(n=1, 21,if(tetrmod(5,n,10^n)!=tetrmod(5,n-1,10^(n-1)),print1(tetrmod(5,n,10^(n-1)),", "))) \\ Davis Smith, Mar 09 2019

Extensions

a(5)-a(7) from Felix Fröhlich, Feb 24 2019
a(8) from Michel Marcus, Mar 02 2019
a(9)-a(21) from Davis Smith, Mar 07 2019

A290788 Values of n such that 6^n ends in n, or expomorphic numbers in "base" 6.

Original entry on oeis.org

6, 56, 656, 8656, 38656, 238656, 7238656, 47238656, 447238656, 7447238656, 27447238656, 227447238656, 3227447238656
Offset: 1

Views

Author

Bernard Schott, Aug 10 2017

Keywords

Comments

Definition: For positive integers b (as base) and n, the positive integer (allowing initial 0's) a(n) is expomorphic relative to base b (here 6) if a(n) has exactly n decimal digits and if b^a(n) == a(n) (mod 10^n) or, equivalently, b^a(n) ends in a(n). [See Crux Mathematicorum link.]

Examples

			6^6 = 46656 ends in 6, so 6 is a term.
6^56 = ...656 ends in 56, so 56 is another term.
		

Crossrefs

Cf. A064541 (base 2), A183613 (base 3), A288845 (base 4), A289138, A306570 (base 5), A306686 (base 9).
Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).

Programs

  • Mathematica
    Select[Range[10^6], PowerMod[6, #, 10^(1 + Floor@ Log10[#])] == # &] (* Michael De Vlieger, Apr 13 2021 *)
  • PARI
    is(n)=my(m=10^#digits(n)); Mod(6,m)^n==n \\ Charles R Greathouse IV, Aug 10 2017

Extensions

a(6)-a(9) from Charles R Greathouse IV, Aug 10 2017
a(10)-a(13) from Chai Wah Wu, Apr 13 2021

A351410 Numbers m such that the decimal representation of 8^m ends in m.

Original entry on oeis.org

56, 856, 5856, 25856, 225856, 5225856, 95225856, 895225856, 6895225856, 16895225856, 416895225856, 5416895225856, 35416895225856, 7035416895225856, 77035416895225856, 577035416895225856, 1577035416895225856, 21577035416895225856, 521577035416895225856, 1521577035416895225856, 81521577035416895225856
Offset: 1

Views

Author

Bernard Schott, Feb 10 2022

Keywords

Comments

The Crux Mathematicorum link calls these numbers "expomorphic" relative to "base" b, with here b = 8.
Under that definition, the term after a(13) = 35416895225856 is not "035416895225856" or "35416895225856" but a(14) = 7035416895225856.
Conjecture: if k(n) is "expomorphic" relative to "base" b, then the next one in the sequence, k(n+1), consists of the last n+1 digits of b^k(n).
This conjecture is true. See A133618. - David A. Corneth, Feb 10 2022

Examples

			8^56 = 374144419156711147060143317175368453031918731001856, so 56 is a term.
8^856 = ...5856 ends in 856, so 856 is another term.
		

Crossrefs

Cf. A003226 (automorphic numbers), A033819 (trimorphic numbers).
Cf. A133618 (leading digits).

Extensions

a(7)-a(8) from Michel Marcus, Feb 10 2022
More terms from David A. Corneth, Feb 10 2022
Showing 1-7 of 7 results.