cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A005321 Upper triangular n X n (0,1)-matrices with no zero rows or columns.

Original entry on oeis.org

1, 1, 2, 10, 122, 3346, 196082, 23869210, 5939193962, 2992674197026, 3037348468846562, 6189980791404487210, 25285903982959247885402, 206838285372171652078912306, 3386147595754801373061066905042, 110909859519858523995273393471390010
Offset: 0

Views

Author

Keywords

References

  • T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column sums of A137252.

Programs

  • Mathematica
    max = 14; f[x_] := Sum[ x^n*Product[ (2^i-1) / (1+(2^i-1)*x), {i, 1, n}], {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 23 2011, after Vladeta Jovovic *)
  • PARI
    a(n) = 1 + sum(k=2, n, binomial(n,k)*sum(i=2, k, (-1)^i*prod(j=i+1, k, 2^j - 1))); \\ Michel Marcus, Oct 13 2019

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*A005327(k+1).
G.f.: Sum_{n >= 0} x^n*Product_{i = 1..n} ((2^i-1)/(1 + (2^i-1)*x)). - Vladeta Jovovic, Mar 10 2008
From Peter Bala, Jul 06 2017: (Start)
Two conjectural continued fractions for the o.g.f.:
1/(1 - x/(1 - x/(1 - 6*x/(1 - 9*x/(1 - 28*x/(1 - 49*x/(1 - ... - 2^(n-1)*(2^n - 1)*x/(1 - (2^n - 1)^2*x/(1 - ...)))))))));
1 + x/(1 - 2*x/(1 - 3*x/(1 - 12*x/(1 - 21*x/(1 - ... - 2^n*(2^n - 1)*x/(1 - (2^(n+1) - 1)*(2^n - 1)*x/(1 - ...))))))). Cf. A289314 and A289315. (End)
a(n) = (-1)^n*Sum_{k=0..n} qS2(n,k)*[k]!*(-1)^k, where qS2(n,k) is the triangle A139382, and [k]! is q-factorial, q=2. - Vladimir Kruchinin, Oct 10 2019
a(n) = 1 + Sum_{k=2..n} binomial(n,k)*Sum{i=2..k} (-1)^i*Product_{j=i+1..k} (2^j - 1). See Greenough. - Michel Marcus, Oct 13 2019

Extensions

More terms from Max Alekseyev, Apr 27 2010

A289315 Number of n X n Fishburn matrices with entries in the set {0,1,2,3}.

Original entry on oeis.org

1, 3, 36, 2052, 505764, 511718148, 2088275673636, 34176650317115652, 2239082850356711468964, 586908388119824949146284548, 615402202729113953115253336166436, 2581165458211746544190089033131172341252, 43304685245392697816407075492352986194550240164
Offset: 0

Views

Author

Peter Bala, Jul 03 2017

Keywords

Comments

A Fishburn matrix is defined to be an upper-triangular matrix with nonnegative integer entries such that each row and column contains a nonzero entry. See A005321 for primitive Fishburn matrices of dimension n, that is, Fishburn matrices of dimension n with entries in the set {0,1}.
The present sequence has an alternative description as the number of primitive Fishburn matrices of dimension n where each entry equal to 1 can have one of three different colors. Cf. A289314.

Examples

			a(2) = 36: The 36 2 X 2 Fishburn matrices with entries 0, 1, 2 or 3 are
/1 0\ /1 0\ /2 0\ /2 0\
\0 1/ \0 2/ \0 1/ \0 2/
/1 0\ /3 0\ /3 0\
\0 3/ \0 1/ \0 3/
/2 0\ /3 0\
\0 3/ \0 2/
/1 2\ /1 1\ /1 2\ /2 1\ /2 2\ /2 1\ /2 2\
\0 1/ \0 2/ \0 2/ \0 1/ \0 1/ \0 2/ \0 2/
/1 1\ /1 3\ /1 1\ /1 3\ /3 1\ /3 3\ /3 1\
\0 1/ \0 1/ \0 3/ \0 3/ \0 1/ \0 1/ \0 3/
/2 3\ /2 2\ /2 3\ /3 2\ /3 3\ /3 2\ /3 3\
\0 2/ \0 3/ \0 3/ \0 2/ \0 2/ \0 3/ \0 3/
/1 2\ /1 3\ /2 3\ /2 1\ /3 1\ /3 2\.
\0 3/ \0 2/ \0 1/ \0 3/ \0 2/ \0 1/
Alternatively, the 36 3-colored primitive Fishburn matrices of dimension 2 (using 1_j, j = 1,2,3 to denote the three different colored versions of 1) are
/1_j  0\ (9 possibilities)
\ 0 1_j/
and
/1_j 1_j\ (27 possibilities).
\ 0  1_j/
		

Crossrefs

Programs

  • Maple
    G:= add(x^n*mul((4^i-1)/(1+x*(4^i-1)), i=1..n),n=0..40):
    S:= series(G,x,41):
    seq(coeff(S,x,j),j=0..40); # Robert Israel, Jul 10 2017
  • Mathematica
    Table[SeriesCoefficient[Sum[x^j*Product[(4^i - 1)/(1 + x (4^i - 1)), {i, j}], {j, 0, n}], {x, 0, n}], {n, 0, 12}] (* Michael De Vlieger, Jul 10 2017, after Maple by Robert Israel *)

Formula

O.g.f.: A(x) = Sum_{n >= 0} x^n Product_{i = 1..n} (4^i - 1)/(1 + x*(4^i - 1)) = 1 + 3*x + 36*x^2 + 2052*x^3 + ... (use Jelínek, Theorem 2.1 with v = w = x = y = 3).
Two conjectural continued fractions for the o.g.f.:
A(x) = 1/(1 - 3*x/(1 - 9*x/(1 - 60*x/(1 - 225*x/(1 - 1008*x/(1 - 3969*x/(1 - ... - 4^(n-1)*(4^n - 1)*x/(1 - (4^n - 1)^2*x/(1 - ...))))))))) and
A(x) = 1 + 3*x/(1 - 12*x/(1 - 45*x/(1 - 240*x/(1 - 945*x/(1 - ... - 4^n*(4^n - 1)*x/(1 - (4^(n+1) - 1)*(4^n - 1)*x/(1 - ...))))))).
a(n) ~ c * 2^(n*(n+1)), where c = QPochhammer(1/4)^2 = 0.474083940023743191581900099468175063640311684514259231... - Vaclav Kotesovec, Aug 31 2023, updated Mar 17 2024

A369415 Number A(n,k) of n X n Fishburn matrices with entries in the set {0,1,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 12, 10, 0, 1, 4, 36, 264, 122, 0, 1, 5, 80, 2052, 19632, 3346, 0, 1, 6, 150, 9280, 505764, 4606752, 196082, 0, 1, 7, 252, 30750, 5684480, 511718148, 3311447232, 23869210, 0, 1, 8, 392, 83160, 39378750, 17672135680, 2088275673636, 7202118117504, 5939193962, 0
Offset: 0

Views

Author

Alois P. Heinz, Jan 22 2024

Keywords

Comments

Number of upper triangular n X n {0,1,...,k}-matrices with no zero rows or columns.

Examples

			A(2,3) = 3*3*4 = 36:
  [10] [10] [10]  [20] [20] [20]  [30] [30] [30]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
  [11] [11] [11]  [21] [21] [21]  [31] [31] [31]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
  [12] [12] [12]  [22] [22] [22]  [32] [32] [32]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
  [13] [13] [13]  [23] [23] [23]  [33] [33] [33]
  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]  [ 1] [ 2] [ 3]
.
Square array A(n,k) begins:
  1,    1,       1,         1,           1,            1, ...
  0,    1,       2,         3,           4,            5, ...
  0,    2,      12,        36,          80,          150, ...
  0,   10,     264,      2052,        9280,        30750, ...
  0,  122,   19632,    505764,     5684480,     39378750, ...
  0, 3346, 4606752, 511718148, 17672135680, 305416893750, ...
  ...
		

Crossrefs

Columns k=0-3 give: A000007, A005321, A289314, A289315.
Rows n=0-3 give: A000012, A001477, A011379, A369423.
Main diagonal gives A369336.

Programs

  • Maple
    A:= (n, k)-> coeff(series(add(x^j*mul(((k+1)^i-1)/(1+x*
               ((k+1)^i-1)), i=1..j), j=0..n), x, n+1), x, n):
    seq(seq(A(n, d-n), n=0..d), d=0..10);

Formula

A(n,k) = [x^n] Sum_{j=0..n} x^j * Product_{i=1..j} ((k+1)^i-1)/(1+x*((k+1)^i-1)).

A289316 The number of upper-triangular matrices whose nonzero entries are positive odd numbers summing to n and each row contains a nonzero entry.

Original entry on oeis.org

1, 1, 2, 8, 37, 219, 1557, 12994, 124427, 1344506, 16178891, 214522339, 3107144562, 48805300668, 826268787588, 14998055299920, 290550119360174, 5983278021430064, 130512410617529321, 3006012061455129053, 72900477505718600661
Offset: 0

Views

Author

Peter Bala, Jul 24 2017

Keywords

Comments

A row-Fishburn matrix of size n is defined to be an upper-triangular matrix with nonnegative integer entries which sum to n and each row contains a nonzero entry. See A158691. Here we are considering row-Fishburn matrices where the nonzero entries are all odd.
The g.f. F(x) for primitive row_Fishburn matrices (i.e., row_Fishburn matrices with entries restricted to the set {0,1}), is F(x) = Sum_{n>=0} Product_{k=1..n} ( (1 + x)^k - 1 ). See A179525. Let C(x) = x/(1 - x^2) = x + x^3 + x^5 + x^7 + .... Then appplying Lemma 2.2.22 of Goulden and Jackson gives the g.f. for the present sequence as the composition F(C(x)).

Examples

			a(3) = 8: The eight row-Fishburn matrices of size 3 with odd nonzero entries are
(3) /1 1\
    \0 1/
/1 0 0\  /0 1 0\  /0 0 1\
|0 1 0|  |0 1 0|  |0 1 0|
\0 0 1/  \0 0 1/  \0 0 1/
/1 0 0\  /0 1 0\  /0 0 1\
|0 0 1|  |0 0 1|  |0 0 1|
\0 0 1/  \0 0 1/  \0 0 1/
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.

Crossrefs

Programs

  • Maple
    C:= x -> x/(1 - x^2):
    G:= add(mul( (1 + C(x))^k - 1, k=1..n),n=0..20):
    S:= series(G,x,21):
    seq(coeff(S,x,j),j=0..20);

Formula

G.f.: A(x) = Sum_{n >= 0} Product_{k = 1..n} ( (1 + x/(1 - x^2))^k - 1 ).
a(n) ~ 12^(n+1) * n^(n + 1/2) / (exp(n + Pi^2/24) * Pi^(2*n + 3/2)). - Vaclav Kotesovec, Aug 31 2023

A289317 The number of upper-triangular matrices whose nonzero entries are positive odd numbers summing to n and each row and each column contains a nonzero entry.

Original entry on oeis.org

1, 1, 1, 3, 7, 23, 84, 364, 1792, 9953, 61455, 417720, 3098515, 24902930, 215538825, 1998518430, 19761943208, 207571259703, 2307812703419, 27075591512866, 334263981931669
Offset: 0

Views

Author

Peter Bala, Jul 25 2017

Keywords

Comments

A Fishburn matrix of size n is defined to be an upper-triangular matrix with nonnegative integer entries which sum to n and each row and each column contains a nonzero entry. See A022493. Here we are considering Fishburn matrices where the nonzero entries are all odd.
The g.f. for primitive Fishburn matrices (i.e., Fishburn matrices with entries restricted to the set {0,1}), is F(x) = Sum_{n>=0} Product_{k=1..n} ( 1 - 1/(1 + x)^k ). See A138265. Let C(x) = x/(1 - x^2) = x + x^3 + x^5 + x^7 + .... Then applying Lemma 2.2.22 of Goulden and Jackson gives the g.f. for this sequence as the composition F(C(x)).

Examples

			a(4) = 7: The Fishburn matrices of size 4 with odd nonzero entries are
/3 0\ /1 0\
\0 1/ \0 3/
/1 1 0\ /1 0 1\ /1 0 0\
|0 1 0| |0 1 0| |0 1 1|
\0 0 1/ \0 0 1/ \0 0 1/
/1 1 0\
|0 0 1|
\0 0 1/
/1 0 0 0\
|0 1 0 0|
|0 0 1 0|
\0 0 0 1/
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.

Crossrefs

Programs

  • Maple
    C:= x -> x/(1 - x^2):
    G:= add(mul( 1 - 1/(1 + C(x))^k, k=1..n), n=0..20):
    S:= series(G,x,21):
    seq(coeff(S,x,j),j=0..20);

Formula

G.f.: A(x) = Sum_{n >= 0} Product_{k = 1..n} ( 1 - 1/(1 + x/(1 - x^2))^k ).
a(n) ~ 2^(n + 5/2) * 3^(n + 3/2) * n^(n+1) / (exp(n + Pi^2/12) * Pi^(2*n + 2)). - Vaclav Kotesovec, Aug 31 2023

A369336 Number of n X n Fishburn matrices with entries in the set {0,1,...,n}.

Original entry on oeis.org

1, 1, 12, 2052, 5684480, 305416893750, 391129148721673152, 14286237711414132094989064, 17309880507327972883933887341789184, 792117985317303404452447777723478865406570410, 1534214120588806182890487155420702132205591283310000000000
Offset: 0

Views

Author

Alois P. Heinz, Jan 20 2024

Keywords

Comments

Number of upper triangular n X n {0,1,...,n}-matrices with no zero rows or columns.

Examples

			a(0) = 1: [].
a(1) = 1: [1].
a(2) = 12:
  [10] [10] [20] [20]  [11] [11] [21] [21]  [12] [12] [22] [22]
  [ 1] [ 2] [ 1] [ 2]  [ 1] [ 2] [ 1] [ 2]  [ 1] [ 2] [ 1] [ 2].
		

Crossrefs

Main diagonal of A369415.

Programs

  • Maple
    a:= n-> coeff(series(add(x^j*mul(((n+1)^i-1)/(1+x*
        ((n+1)^i-1)), i=1..j), j=0..n), x, n+1), x, n):
    seq(a(n), n=0..10);

Formula

a(n) = [x^n] Sum_{j=0..n} x^j * Product_{i=1..j} ((n+1)^i-1)/(1+x*((n+1)^i-1)).
Showing 1-6 of 6 results.