A005321
Upper triangular n X n (0,1)-matrices with no zero rows or columns.
Original entry on oeis.org
1, 1, 2, 10, 122, 3346, 196082, 23869210, 5939193962, 2992674197026, 3037348468846562, 6189980791404487210, 25285903982959247885402, 206838285372171652078912306, 3386147595754801373061066905042, 110909859519858523995273393471390010
Offset: 0
- T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..80
- E. Andresen and K. Kjeldsen, On certain subgraphs of a complete transitively directed graph, Discrete Math. 14 (1976), no. 2, 103-119.
- William T. Dugan, On the f-vectors of flow polytopes for the complete graph, Sém. Lotharingien Comb., Proc. 36th Conf. Formal Power Series Alg. Comb. (2024) Vol. 91B, Art. No. 101. See p. 3.
- T. Lockman Greenough, Representation and enumeration of interval orders and semiorders, Ph.D. Thesis, Dartmouth, 1976.
- T. L. Greenough, Enumeration of interval orders without duplicated holdings, Preprint, circa 1976. [Annotated scanned copy]
- T. Lockman Greenough, Enumeration of interval orders without duplicated holdings, in Notices of the AMS, February 1976, page A-314.
- T. L. Greenough and K. P. Bogart, The Representation and Enumeration of Interval Orders, Preprint, circa 1976. [Annotated scanned copy]
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Vít Jelínek, Counting Self-Dual Interval Orders, arXiv:1106.2261 [math.CO], 2011. See Corollary 2.4.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614. See Corollary 2.4.
- J. Longyear, T. Trotter, N. J. A. Sloane, Correspondence
- Index entries for sequences related to binary matrices
-
max = 14; f[x_] := Sum[ x^n*Product[ (2^i-1) / (1+(2^i-1)*x), {i, 1, n}], {n, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Nov 23 2011, after Vladeta Jovovic *)
-
a(n) = 1 + sum(k=2, n, binomial(n,k)*sum(i=2, k, (-1)^i*prod(j=i+1, k, 2^j - 1))); \\ Michel Marcus, Oct 13 2019
A289315
Number of n X n Fishburn matrices with entries in the set {0,1,2,3}.
Original entry on oeis.org
1, 3, 36, 2052, 505764, 511718148, 2088275673636, 34176650317115652, 2239082850356711468964, 586908388119824949146284548, 615402202729113953115253336166436, 2581165458211746544190089033131172341252, 43304685245392697816407075492352986194550240164
Offset: 0
a(2) = 36: The 36 2 X 2 Fishburn matrices with entries 0, 1, 2 or 3 are
/1 0\ /1 0\ /2 0\ /2 0\
\0 1/ \0 2/ \0 1/ \0 2/
/1 0\ /3 0\ /3 0\
\0 3/ \0 1/ \0 3/
/2 0\ /3 0\
\0 3/ \0 2/
/1 2\ /1 1\ /1 2\ /2 1\ /2 2\ /2 1\ /2 2\
\0 1/ \0 2/ \0 2/ \0 1/ \0 1/ \0 2/ \0 2/
/1 1\ /1 3\ /1 1\ /1 3\ /3 1\ /3 3\ /3 1\
\0 1/ \0 1/ \0 3/ \0 3/ \0 1/ \0 1/ \0 3/
/2 3\ /2 2\ /2 3\ /3 2\ /3 3\ /3 2\ /3 3\
\0 2/ \0 3/ \0 3/ \0 2/ \0 2/ \0 3/ \0 3/
/1 2\ /1 3\ /2 3\ /2 1\ /3 1\ /3 2\.
\0 3/ \0 2/ \0 1/ \0 3/ \0 2/ \0 1/
Alternatively, the 36 3-colored primitive Fishburn matrices of dimension 2 (using 1_j, j = 1,2,3 to denote the three different colored versions of 1) are
/1_j 0\ (9 possibilities)
\ 0 1_j/
and
/1_j 1_j\ (27 possibilities).
\ 0 1_j/
- Robert Israel, Table of n, a(n) for n = 0..57
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614; arXiv preprint, arXiv:1106.2261 [math.CO], 2011.
-
G:= add(x^n*mul((4^i-1)/(1+x*(4^i-1)), i=1..n),n=0..40):
S:= series(G,x,41):
seq(coeff(S,x,j),j=0..40); # Robert Israel, Jul 10 2017
-
Table[SeriesCoefficient[Sum[x^j*Product[(4^i - 1)/(1 + x (4^i - 1)), {i, j}], {j, 0, n}], {x, 0, n}], {n, 0, 12}] (* Michael De Vlieger, Jul 10 2017, after Maple by Robert Israel *)
A369415
Number A(n,k) of n X n Fishburn matrices with entries in the set {0,1,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 12, 10, 0, 1, 4, 36, 264, 122, 0, 1, 5, 80, 2052, 19632, 3346, 0, 1, 6, 150, 9280, 505764, 4606752, 196082, 0, 1, 7, 252, 30750, 5684480, 511718148, 3311447232, 23869210, 0, 1, 8, 392, 83160, 39378750, 17672135680, 2088275673636, 7202118117504, 5939193962, 0
Offset: 0
A(2,3) = 3*3*4 = 36:
[10] [10] [10] [20] [20] [20] [30] [30] [30]
[ 1] [ 2] [ 3] [ 1] [ 2] [ 3] [ 1] [ 2] [ 3]
.
[11] [11] [11] [21] [21] [21] [31] [31] [31]
[ 1] [ 2] [ 3] [ 1] [ 2] [ 3] [ 1] [ 2] [ 3]
.
[12] [12] [12] [22] [22] [22] [32] [32] [32]
[ 1] [ 2] [ 3] [ 1] [ 2] [ 3] [ 1] [ 2] [ 3]
.
[13] [13] [13] [23] [23] [23] [33] [33] [33]
[ 1] [ 2] [ 3] [ 1] [ 2] [ 3] [ 1] [ 2] [ 3]
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 2, 12, 36, 80, 150, ...
0, 10, 264, 2052, 9280, 30750, ...
0, 122, 19632, 505764, 5684480, 39378750, ...
0, 3346, 4606752, 511718148, 17672135680, 305416893750, ...
...
- Alois P. Heinz, Antidiagonals n = 0..53, flattened
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614; arXiv preprint, arXiv:1106.2261 [math.CO], 2011.
- Wikipedia, Peter C. Fishburn
-
A:= (n, k)-> coeff(series(add(x^j*mul(((k+1)^i-1)/(1+x*
((k+1)^i-1)), i=1..j), j=0..n), x, n+1), x, n):
seq(seq(A(n, d-n), n=0..d), d=0..10);
A289316
The number of upper-triangular matrices whose nonzero entries are positive odd numbers summing to n and each row contains a nonzero entry.
Original entry on oeis.org
1, 1, 2, 8, 37, 219, 1557, 12994, 124427, 1344506, 16178891, 214522339, 3107144562, 48805300668, 826268787588, 14998055299920, 290550119360174, 5983278021430064, 130512410617529321, 3006012061455129053, 72900477505718600661
Offset: 0
a(3) = 8: The eight row-Fishburn matrices of size 3 with odd nonzero entries are
(3) /1 1\
\0 1/
/1 0 0\ /0 1 0\ /0 0 1\
|0 1 0| |0 1 0| |0 1 0|
\0 0 1/ \0 0 1/ \0 0 1/
/1 0 0\ /0 1 0\ /0 0 1\
|0 0 1| |0 0 1| |0 0 1|
\0 0 1/ \0 0 1/ \0 0 1/
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
-
C:= x -> x/(1 - x^2):
G:= add(mul( (1 + C(x))^k - 1, k=1..n),n=0..20):
S:= series(G,x,21):
seq(coeff(S,x,j),j=0..20);
A289317
The number of upper-triangular matrices whose nonzero entries are positive odd numbers summing to n and each row and each column contains a nonzero entry.
Original entry on oeis.org
1, 1, 1, 3, 7, 23, 84, 364, 1792, 9953, 61455, 417720, 3098515, 24902930, 215538825, 1998518430, 19761943208, 207571259703, 2307812703419, 27075591512866, 334263981931669
Offset: 0
a(4) = 7: The Fishburn matrices of size 4 with odd nonzero entries are
/3 0\ /1 0\
\0 1/ \0 3/
/1 1 0\ /1 0 1\ /1 0 0\
|0 1 0| |0 1 0| |0 1 1|
\0 0 1/ \0 0 1/ \0 0 1/
/1 1 0\
|0 0 1|
\0 0 1/
/1 0 0 0\
|0 1 0 0|
|0 0 1 0|
\0 0 0 1/
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 42.
-
C:= x -> x/(1 - x^2):
G:= add(mul( 1 - 1/(1 + C(x))^k, k=1..n), n=0..20):
S:= series(G,x,21):
seq(coeff(S,x,j),j=0..20);
A369336
Number of n X n Fishburn matrices with entries in the set {0,1,...,n}.
Original entry on oeis.org
1, 1, 12, 2052, 5684480, 305416893750, 391129148721673152, 14286237711414132094989064, 17309880507327972883933887341789184, 792117985317303404452447777723478865406570410, 1534214120588806182890487155420702132205591283310000000000
Offset: 0
a(0) = 1: [].
a(1) = 1: [1].
a(2) = 12:
[10] [10] [20] [20] [11] [11] [21] [21] [12] [12] [22] [22]
[ 1] [ 2] [ 1] [ 2] [ 1] [ 2] [ 1] [ 2] [ 1] [ 2] [ 1] [ 2].
- Alois P. Heinz, Table of n, a(n) for n = 0..35
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Vít Jelínek, Counting general and self-dual interval orders, Journal of Combinatorial Theory, Series A, Volume 119, Issue 3, April 2012, pp. 599-614; arXiv preprint, arXiv:1106.2261 [math.CO], 2011.
- Wikipedia, Peter C. Fishburn
-
a:= n-> coeff(series(add(x^j*mul(((n+1)^i-1)/(1+x*
((n+1)^i-1)), i=1..j), j=0..n), x, n+1), x, n):
seq(a(n), n=0..10);
Showing 1-6 of 6 results.
Comments