A289306
a(n) = Sum_{k >= 0}(-1)^k*binomial(n,5*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 0, -5, -20, -55, -125, -250, -450, -725, -1000, -1000, 0, 3625, 13125, 34375, 76875, 153750, 278125, 450000, 621875, 621875, 0, -2250000, -8140625, -21312500, -47656250, -95312500, -172421875, -278984375, -385546875, -385546875, 0, 1394921875
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361 [math.NT], 2016.
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5).
-
Table[Sum[(-1)^k*Binomial[n, 5 k], {k, 0, n}], {n, 0, 36}] (* or *)
CoefficientList[Series[-((-1 + x)^4/((-1 + x)^5 - x^5)), {x, 0, 36}], x] (* Michael De Vlieger, Jul 04 2017 *)
LinearRecurrence[{5,-10,10,-5},{1,1,1,1,1},40] (* Harvey P. Dale, Dec 23 2018 *)
-
a(n) = sum(k=0, n\5, (-1)^k*binomial(n,5*k)); \\ Michel Marcus, Jul 02 2017
A289388
a(n) = Sum_{k>=0} (-1)^k*binomial(n,5*k+3).
Original entry on oeis.org
0, 0, 0, 1, 4, 10, 20, 35, 55, 75, 75, 0, -275, -1000, -2625, -5875, -11750, -21250, -34375, -47500, -47500, 0, 171875, 621875, 1628125, 3640625, 7281250, 13171875, 21312500, 29453125, 29453125, 0, -106562500, -385546875, -1009375000, -2257031250, -4514062500
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
-
Table[Sum[(-1)^k*Binomial[n, 5 k + 3], {k, 0, n}], {n, 0, 36}] (* or *)
CoefficientList[Series[((-1 + x) x^3)/((-1 + x)^5 - x^5), {x, 0, 36}], x] (* Michael De Vlieger, Jul 10 2017 *)
-
a(n) = sum(k=0, (n-3)\5, (-1)^k*binomial(n, 5*k+3)); \\ Michel Marcus, Jul 05 2017
A289389
a(n) = Sum_{k>=0} (-1)^k*binomial(n,5*k+4).
Original entry on oeis.org
0, 0, 0, 0, 1, 5, 15, 35, 70, 125, 200, 275, 275, 0, -1000, -3625, -9500, -21250, -42500, -76875, -124375, -171875, -171875, 0, 621875, 2250000, 5890625, 13171875, 26343750, 47656250, 77109375, 106562500, 106562500, 0, -385546875, -1394921875, -3651953125
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
-
Table[Sum[(-1)^k*Binomial[n, 5 k + 4], {k, 0, n}], {n, 0, 36}] (* or *)
CoefficientList[Series[(-x^4)/((-1 + x)^5 - x^5), {x, 0, 36}], x] (* Michael De Vlieger, Jul 10 2017 *)
-
a(n) = sum(k=0, (n-4)\5, (-1)^k*binomial(n, 5*k+4)); \\ Michel Marcus, Jul 05 2017
A289387
a(n) = Sum_{k>=0} (-1)^k*binomial(n, 5*k+2).
Original entry on oeis.org
0, 0, 1, 3, 6, 10, 15, 20, 20, 0, -75, -275, -725, -1625, -3250, -5875, -9500, -13125, -13125, 0, 47500, 171875, 450000, 1006250, 2012500, 3640625, 5890625, 8140625, 8140625, 0, -29453125, -106562500, -278984375, -623828125, -1247656250, -2257031250
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
-
f:= gfun:-rectoproc({5*a(n)-10*a(n+1)+10*a(n+2)-5*a(n+3)+a(n+4), a(0)=0,
a(1)=0, a(2)=1, a(3) = 3,a(4)=6},a(n),remember):
map(f, [$0..40]); # Robert Israel, Jul 11 2017
-
Table[Sum[(-1)^k*Binomial[n, 5 k + 2], {k, 0, n}], {n, 0, 35}] (* or *)
CoefficientList[Series[-((-1 + x)^2 x^2)/((-1 + x)^5 - x^5), {x, 0, 35}], x] (* Michael De Vlieger, Jul 10 2017 *)
-
a(n) = sum(k=0, (n-2)\5, (-1)^k*binomial(n, 5*k+2)); \\ Michel Marcus, Jul 05 2017
A307079
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-2))/((1-x)^k+x^k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 0, 1, 1, 2, 3, 3, -4, 1, 1, 2, 3, 4, 0, -8, 1, 1, 2, 3, 4, 4, -9, -8, 1, 1, 2, 3, 4, 5, 0, -27, 0, 1, 1, 2, 3, 4, 5, 5, -14, -54, 16, 1, 1, 2, 3, 4, 5, 6, 0, -48, -81, 32, 1, 1, 2, 3, 4, 5, 6, 6, -20, -116, -81, 32, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 2, 3, 3, 3, 3, 3, 3, 3, ...
1, 0, 3, 4, 4, 4, 4, 4, 4, ...
1, -4, 0, 4, 5, 5, 5, 5, 5, ...
1, -8, -9, 0, 5, 6, 6, 6, 6, ...
1, -8, -27, -14, 0, 6, 7, 7, 7, ...
1, 0, -54, -48, -20, 0, 7, 8, 8, ...
1, 16, -81, -116, -75, -27, 0, 8, 9, ...
-
T[n_, k_] := Sum[(-1)^j * Binomial[n+1, k*j+1], {j, 0, Floor[n/k]}]; Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
Showing 1-5 of 5 results.
Comments