A289306
a(n) = Sum_{k >= 0}(-1)^k*binomial(n,5*k).
Original entry on oeis.org
1, 1, 1, 1, 1, 0, -5, -20, -55, -125, -250, -450, -725, -1000, -1000, 0, 3625, 13125, 34375, 76875, 153750, 278125, 450000, 621875, 621875, 0, -2250000, -8140625, -21312500, -47656250, -95312500, -172421875, -278984375, -385546875, -385546875, 0, 1394921875
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
- Seiichi Manyama, Table of n, a(n) for n = 0..3000
- John B. Dobson, A matrix variation on Ramus's identity for lacunary sums of binomial coefficients, arXiv preprint arXiv:1610.09361 [math.NT], 2016.
- Vladimir Shevelev, Combinatorial identities generated by difference analogs of hyperbolic and trigonometric functions of order n, arXiv:1706.01454 [math.CO], 2017.
- Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5).
-
Table[Sum[(-1)^k*Binomial[n, 5 k], {k, 0, n}], {n, 0, 36}] (* or *)
CoefficientList[Series[-((-1 + x)^4/((-1 + x)^5 - x^5)), {x, 0, 36}], x] (* Michael De Vlieger, Jul 04 2017 *)
LinearRecurrence[{5,-10,10,-5},{1,1,1,1,1},40] (* Harvey P. Dale, Dec 23 2018 *)
-
a(n) = sum(k=0, n\5, (-1)^k*binomial(n,5*k)); \\ Michel Marcus, Jul 02 2017
A289321
a(n) = Sum_{k >= 0}(-1)^k*binomial(n,5*k+1).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 5, 0, -20, -75, -200, -450, -900, -1625, -2625, -3625, -3625, 0, 13125, 47500, 124375, 278125, 556250, 1006250, 1628125, 2250000, 2250000, 0, -8140625, -29453125, -77109375, -172421875, -344843750, -623828125, -1009375000, -1394921875
Offset: 0
-
f:= gfun:-rectoproc({5*a(n)-10*a(n+1)+10*a(n+2)-5*a(n+3)+a(n+4), a(0)=0,
a(1)=1, a(2)=2, a(3) = 3, a(4)=4}, a(n), remember):
map(f, [$0..40]); # Robert Israel, Jul 11 2017
-
Table[Sum[(-1)^k*Binomial[n, 5 k + 1], {k, 0, n}], {n, 0, 35}] (* or *)
CoefficientList[Series[((-1 + x)^3 x)/((-1 + x)^5 - x^5), {x, 0, 35}], x] (* Michael De Vlieger, Jul 04 2017 *)
LinearRecurrence[{5,-10,10,-5},{0,1,2,3,4},40] (* Harvey P. Dale, Dec 25 2022 *)
-
a(n) = sum(k=0, (n-1)\5, (-1)^k*binomial(n, 5*k+1)); \\ Michel Marcus, Jul 03 2017
A289389
a(n) = Sum_{k>=0} (-1)^k*binomial(n,5*k+4).
Original entry on oeis.org
0, 0, 0, 0, 1, 5, 15, 35, 70, 125, 200, 275, 275, 0, -1000, -3625, -9500, -21250, -42500, -76875, -124375, -171875, -171875, 0, 621875, 2250000, 5890625, 13171875, 26343750, 47656250, 77109375, 106562500, 106562500, 0, -385546875, -1394921875, -3651953125
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
-
Table[Sum[(-1)^k*Binomial[n, 5 k + 4], {k, 0, n}], {n, 0, 36}] (* or *)
CoefficientList[Series[(-x^4)/((-1 + x)^5 - x^5), {x, 0, 36}], x] (* Michael De Vlieger, Jul 10 2017 *)
-
a(n) = sum(k=0, (n-4)\5, (-1)^k*binomial(n, 5*k+4)); \\ Michel Marcus, Jul 05 2017
A289387
a(n) = Sum_{k>=0} (-1)^k*binomial(n, 5*k+2).
Original entry on oeis.org
0, 0, 1, 3, 6, 10, 15, 20, 20, 0, -75, -275, -725, -1625, -3250, -5875, -9500, -13125, -13125, 0, 47500, 171875, 450000, 1006250, 2012500, 3640625, 5890625, 8140625, 8140625, 0, -29453125, -106562500, -278984375, -623828125, -1247656250, -2257031250
Offset: 0
- A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.
-
f:= gfun:-rectoproc({5*a(n)-10*a(n+1)+10*a(n+2)-5*a(n+3)+a(n+4), a(0)=0,
a(1)=0, a(2)=1, a(3) = 3,a(4)=6},a(n),remember):
map(f, [$0..40]); # Robert Israel, Jul 11 2017
-
Table[Sum[(-1)^k*Binomial[n, 5 k + 2], {k, 0, n}], {n, 0, 35}] (* or *)
CoefficientList[Series[-((-1 + x)^2 x^2)/((-1 + x)^5 - x^5), {x, 0, 35}], x] (* Michael De Vlieger, Jul 10 2017 *)
-
a(n) = sum(k=0, (n-2)\5, (-1)^k*binomial(n, 5*k+2)); \\ Michel Marcus, Jul 05 2017
A307394
Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k+x^k).
Original entry on oeis.org
1, 1, 3, 1, 4, 6, 1, 4, 9, 10, 1, 4, 10, 14, 15, 1, 4, 10, 19, 15, 21, 1, 4, 10, 20, 28, 8, 28, 1, 4, 10, 20, 34, 28, -7, 36, 1, 4, 10, 20, 35, 48, 1, -22, 45, 1, 4, 10, 20, 35, 55, 48, -80, -21, 55, 1, 4, 10, 20, 35, 56, 75, 0, -242, 12, 66, 1, 4, 10, 20, 35, 56, 83, 75, -164, -485, 77, 78
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
3, 4, 4, 4, 4, 4, 4, 4, 4, ...
6, 9, 10, 10, 10, 10, 10, 10, 10, ...
10, 14, 19, 20, 20, 20, 20, 20, 20, ...
15, 15, 28, 34, 35, 35, 35, 35, 35, ...
21, 8, 28, 48, 55, 56, 56, 56, 56, ...
28, -7, 1, 48, 75, 83, 84, 84, 84, ...
36, -22, -80, 0, 75, 110, 119, 120, 120, ...
45, -21, -242, -164, 0, 110, 154, 164, 165, ...
-
T[n_, k_] := Sum[(-1)^j * Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)
Showing 1-5 of 5 results.
Comments