cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A289306 a(n) = Sum_{k >= 0}(-1)^k*binomial(n,5*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, -5, -20, -55, -125, -250, -450, -725, -1000, -1000, 0, 3625, 13125, 34375, 76875, 153750, 278125, 450000, 621875, 621875, 0, -2250000, -8140625, -21312500, -47656250, -95312500, -172421875, -278984375, -385546875, -385546875, 0, 1394921875
Offset: 0

Views

Author

Vladimir Shevelev, Jul 02 2017

Keywords

Comments

{A289306, A289321, A289387, A289388, A289389} is the difference analog of the trigonometric functions {k_1(x), k_2(x), k_3(x), k_4(x), k_5(x)} of order 5. For the definitions of {k_i(x)} and the difference analog {K_i (n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Jul 24 2017

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k*Binomial[n, 5 k], {k, 0, n}], {n, 0, 36}] (* or *)
    CoefficientList[Series[-((-1 + x)^4/((-1 + x)^5 - x^5)), {x, 0, 36}], x] (* Michael De Vlieger, Jul 04 2017 *)
    LinearRecurrence[{5,-10,10,-5},{1,1,1,1,1},40] (* Harvey P. Dale, Dec 23 2018 *)
  • PARI
    a(n) = sum(k=0, n\5, (-1)^k*binomial(n,5*k)); \\ Michel Marcus, Jul 02 2017

Formula

G.f.: -((-1+x)^4/((-1+x)^5-x^5)). - Peter J. C. Moses, Jul 02 2017
For n>=1, a(n) = (2/5)*(phi+2)^(n/2)*(cos(Pi*n/10) + (phi-1)^n*cos(3 * Pi* n/10)), where phi is the golden ratio. In particular, a(n) = 0 if and only if n==5 (mod 10).
a(n+m) = a(n)*a(m) - K_5(n)*K_2(m) - K_4(n)*K_3(m) - K_3(n)*K_4(m) - K_2(n)*K_5(m), where K_2 is A289321, K_3 is A289387, K_4 is A289388, K_5 is A289389. - Vladimir Shevelev, Jul 24 2017

A289321 a(n) = Sum_{k >= 0}(-1)^k*binomial(n,5*k+1).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 5, 0, -20, -75, -200, -450, -900, -1625, -2625, -3625, -3625, 0, 13125, 47500, 124375, 278125, 556250, 1006250, 1628125, 2250000, 2250000, 0, -8140625, -29453125, -77109375, -172421875, -344843750, -623828125, -1009375000, -1394921875
Offset: 0

Views

Author

Vladimir Shevelev, Jul 02 2017

Keywords

Comments

a(n) = 0 for n == 7 (mod 10). - Robert Israel, Jul 12 2017
{A289306, A289321, A289387, A289388, A289389} is the difference analog of the trigonometric functions {k_1(x), k_2(x), k_3(x), k_4(x), k_5(x)} of order 5. For the definitions of {k_i(x)} and the difference analog {K_i (n)} see [Erdelyi] and the Shevelev link respectively. - Vladimir Shevelev, Jul 24 2017

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({5*a(n)-10*a(n+1)+10*a(n+2)-5*a(n+3)+a(n+4), a(0)=0,
    a(1)=1, a(2)=2, a(3) = 3, a(4)=4}, a(n), remember):
    map(f, [$0..40]); # Robert Israel, Jul 11 2017
  • Mathematica
    Table[Sum[(-1)^k*Binomial[n, 5 k + 1], {k, 0, n}], {n, 0, 35}] (* or *)
    CoefficientList[Series[((-1 + x)^3 x)/((-1 + x)^5 - x^5), {x, 0, 35}], x] (* Michael De Vlieger, Jul 04 2017 *)
    LinearRecurrence[{5,-10,10,-5},{0,1,2,3,4},40] (* Harvey P. Dale, Dec 25 2022 *)
  • PARI
    a(n) = sum(k=0, (n-1)\5, (-1)^k*binomial(n, 5*k+1)); \\ Michel Marcus, Jul 03 2017

Formula

G.f.: ((-1+x)^3 x)/((-1+x)^5-x^5). - Peter J. C. Moses, Jul 02 2017
For n>=1, a(n) = (2/5)*(phi+2)^(n/2)*(cos(Pi*(n-2)/10) + (phi-1)^n* cos (3*Pi*(n-2)/10)), where phi is the golden ratio.
a(n+m) = a(n)*K_1(m) + K_1(n)*a(m) - K_5(n)*K_3(m) - K_4(n)*K_4(m) - K_3(n)*K_5(m), where K_1 is A289306, K_3 is A289387, K_4 is A289388, K_5 is A289389. - Vladimir Shevelev, Jul 24 2017

A289389 a(n) = Sum_{k>=0} (-1)^k*binomial(n,5*k+4).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 35, 70, 125, 200, 275, 275, 0, -1000, -3625, -9500, -21250, -42500, -76875, -124375, -171875, -171875, 0, 621875, 2250000, 5890625, 13171875, 26343750, 47656250, 77109375, 106562500, 106562500, 0, -385546875, -1394921875, -3651953125
Offset: 0

Views

Author

Vladimir Shevelev, Jul 05 2017

Keywords

Comments

{A289306, A289321, A289387, A289388, A289389} is the difference analog of the trigonometric functions {k_1(x), k_2(x), k_3(x), k_4(x), k_5(x)} of order 5. For the definitions of {k_i(x)} and the difference analog {K_i (n)} see [Erdelyi] and the Shevelev link respectively.

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^k*Binomial[n, 5 k + 4], {k, 0, n}], {n, 0, 36}] (* or *)
    CoefficientList[Series[(-x^4)/((-1 + x)^5 - x^5), {x, 0, 36}], x] (* Michael De Vlieger, Jul 10 2017 *)
  • PARI
    a(n) = sum(k=0, (n-4)\5, (-1)^k*binomial(n, 5*k+4)); \\ Michel Marcus, Jul 05 2017

Formula

G.f.: (-x^4)/((-1+x)^5 - x^5). - Peter J. C. Moses, Jul 05 2017
For n>=1, a(n) = (2/5)*(phi+2)^(n/2)*(cos(Pi*(n-8)/10) + (phi-1)^n*cos (3* Pi*(n-8)/10)), where phi is the golden ratio;
a(n+m) = a(n)*K_1(m) + K_4(n)*K_2(m) + K_3(n)*K_3(m) + K_2(n)*K_4(m) + K_1(n)*a(m), where K_1 is A289306, K_2 is A289321, K_3 is A289387, K_4 is A289388.
a(n) = 0 if and only if n=0,1,2 or n==3 (mod 10). - Vladimir Shevelev, Jul 15 2017

Extensions

More terms from Peter J. C. Moses, Jul 05 2017

A289387 a(n) = Sum_{k>=0} (-1)^k*binomial(n, 5*k+2).

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 20, 20, 0, -75, -275, -725, -1625, -3250, -5875, -9500, -13125, -13125, 0, 47500, 171875, 450000, 1006250, 2012500, 3640625, 5890625, 8140625, 8140625, 0, -29453125, -106562500, -278984375, -623828125, -1247656250, -2257031250
Offset: 0

Views

Author

Vladimir Shevelev, Jul 05 2017

Keywords

Comments

{A289306, A289321, A289387, A289388, A289389} is the difference analog of the trigonometric functions {k_1(x), k_2(x), k_3(x), k_4(x), k_5(x)} of order 5. For the definitions of {k_i(x)} and the difference analog {K_i (n)} see [Erdelyi] and the first Shevelev link respectively.
From Robert Israel, Jul 11 2017: (Start)
a(n)=0 for n == 9 (mod 10).
A112765(a(10*k)) = (5/2)*k - 3/4 - (-1)^k/4.
A112765(a(10*k+2)) = (5/2)*k - 1/4 + (-1)^k/4.
A112765(a(10*k+3)) = A112765(a(10*k+4)) = (5/2)*k + 1/4 - (-1)^k/4.
A112765(a(10*k+5)) = A112765(a(10*k+6)) = (5/2)*k + 3/4 + (-1)^k/4.
A112765(a(10*k+7)) = A112765(a(10*k+8)) = (5/2)*k + 5/4 - (-1)^k/4. (End)
Note that from author's formula (see below) we have that, except for zeros in the sequence mentioned by Robert Israel, there are only a(0) = a(1) = 0. Indeed, otherwise for some value of n we should have the equality (phi-1)^n = -cos(Pi*(n-4)/10)/cos(3*Pi*(n-4)/10). However, the absolute value of the right hand side takes the six distinct values only: 1, phi, phi^2, phi^(-1), phi^(-2), 1/3 (the last value we have when n == 9 (mod 10), since lim_{x->Pi/2}cos(x)/cos(3*x)= -1/3). Thus for n>=3, we have (phi-1)^n = phi^(-n) < |cos(Pi*(n-4)/10)/cos(3*Pi*(n-4)/10)|. - Vladimir Shevelev, Jul 15 2017

References

  • A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, Chapter XVIII.

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({5*a(n)-10*a(n+1)+10*a(n+2)-5*a(n+3)+a(n+4), a(0)=0,
    a(1)=0, a(2)=1, a(3) = 3,a(4)=6},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Jul 11 2017
  • Mathematica
    Table[Sum[(-1)^k*Binomial[n, 5 k + 2], {k, 0, n}], {n, 0, 35}] (* or *)
    CoefficientList[Series[-((-1 + x)^2 x^2)/((-1 + x)^5 - x^5), {x, 0, 35}], x] (* Michael De Vlieger, Jul 10 2017 *)
  • PARI
    a(n) = sum(k=0, (n-2)\5, (-1)^k*binomial(n, 5*k+2)); \\ Michel Marcus, Jul 05 2017

Formula

G.f.: -((-1+x)^2*x^2)/((-1+x)^5 - x^5). - Peter J. C. Moses, Jul 05 2017
For n>=1, a(n) = (2/5)*(phi+2)^(n/2)*(cos(Pi*(n-4)/10) + (phi-1)^n*cos(3* Pi*(n-4)/10)), where phi is the golden ratio.
a(n+m) = a(n)*K_1(m) + K_2(n)*K_2(m) + K_1(n)*a(m) - K_5(n)*K_4(m) - K_4(n)*K_5(m), where K_1 is A289306, K_2 is A289321, K_4 is A289388, K_5 is A289389.
For every n>=1, the determinant of circulant matrix of order 5 (see [Wikipedia]) with the entries (-1)^(i-1)* K_i(n), i=1..5, is 0. Here K_1, K_2, K_4 and K_5 are the same as in the previous formula, while K_3(n) = a(n). For a proof and a generalization see the second Shevelev link that also contains two unsolved problems. - Vladimir Shevelev, Jul 26 2017

Extensions

More terms from Peter J. C. Moses, Jul 05 2017

A307394 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of g.f. ((1-x)^(k-4))/((1-x)^k+x^k).

Original entry on oeis.org

1, 1, 3, 1, 4, 6, 1, 4, 9, 10, 1, 4, 10, 14, 15, 1, 4, 10, 19, 15, 21, 1, 4, 10, 20, 28, 8, 28, 1, 4, 10, 20, 34, 28, -7, 36, 1, 4, 10, 20, 35, 48, 1, -22, 45, 1, 4, 10, 20, 35, 55, 48, -80, -21, 55, 1, 4, 10, 20, 35, 56, 75, 0, -242, 12, 66, 1, 4, 10, 20, 35, 56, 83, 75, -164, -485, 77, 78
Offset: 0

Views

Author

Seiichi Manyama, Apr 07 2019

Keywords

Examples

			Square array begins:
    1,   1,    1,    1,  1,   1,   1,   1,   1, ...
    3,   4,    4,    4,  4,   4,   4,   4,   4, ...
    6,   9,   10,   10, 10,  10,  10,  10,  10, ...
   10,  14,   19,   20, 20,  20,  20,  20,  20, ...
   15,  15,   28,   34, 35,  35,  35,  35,  35, ...
   21,   8,   28,   48, 55,  56,  56,  56,  56, ...
   28,  -7,    1,   48, 75,  83,  84,  84,  84, ...
   36, -22,  -80,    0, 75, 110, 119, 120, 120, ...
   45, -21, -242, -164,  0, 110, 154, 164, 165, ...
		

Crossrefs

Columns 1-5 give A000217(n+1), A279230, A307395, A099589(n+3), A289388(n+3).

Programs

  • Mathematica
    T[n_, k_] := Sum[(-1)^j * Binomial[n+3, k*j + 3], {j, 0, Floor[n/k]}]; Table[T[n - k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Amiram Eldar, May 20 2021 *)

Formula

A(n,k) = Sum_{j=0..floor(n/k)} (-1)^j * binomial(n+3,k*j+3).
A(n,2*k) = Sum_{i=0..n} Sum_{j=0..n-i} (-1)^j * binomial(i+1,k*j+1) * binomial(n-i+1,k*j+1).
Showing 1-5 of 5 results.