cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A325973 Arithmetic mean of {sum of unitary divisors} and {sum of squarefree divisors}: a(n) = (1/2) * (A034448(n) + A048250(n)).

Original entry on oeis.org

1, 3, 4, 4, 6, 12, 8, 6, 7, 18, 12, 16, 14, 24, 24, 10, 18, 21, 20, 24, 32, 36, 24, 24, 16, 42, 16, 32, 30, 72, 32, 18, 48, 54, 48, 31, 38, 60, 56, 36, 42, 96, 44, 48, 42, 72, 48, 40, 29, 48, 72, 56, 54, 48, 72, 48, 80, 90, 60, 96, 62, 96, 56, 34, 84, 144, 68, 72, 96, 144, 72, 51, 74, 114, 64, 80, 96, 168, 80, 60, 43, 126
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

This is not multiplicative: a(4) = 4, a(9) = 7, but a(36) = 31, not 28. However, the function acts multiplicatively on certain subsequences of natural numbers, like for example when restricted to A048107, where this sequence coincides with A326043.

Examples

			For n = 36, its divisors are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these, unitary divisors are 1, 4, 9 and 36, so A034448(36) = 1+4+9+36 = 50, while the squarefree divisors are 1, 2, 3 and 6, so A048250(36) = 1+2+3+6 = 12, thus a(36) = (50+12)/2 = 31.
For n = 495, its divisors are 1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495. Of these, unitary are 1, 5, 9, 11, 45, 55, 99, 495, whose sum is A034448(495) = 720, while the squarefree divisors are 1, 3, 5, 11, 15, 33, 55, 165, and their sum is A048250(495) = 288. Thus a(495) = (720+288)/2 = 504. Also for 495, whose prime factorization is 3^2 * 5^1 * 11^1 this can be computed faster as the average of ((3^2)+1)*(5+1)*(11+1) and (3+1)*(5+1)*(11+1), thus (1/2)*(3+(3^2)+2)*(5+1)*(11+1) = 504.
		

Crossrefs

Programs

Formula

a(n) = (1/2) * (A034448(n) + A048250(n)).
a(n) = A000203(n) - A325974(n).
a(n) = n + A325977(n).
a(A048107(n)) = A326043(A048107(n)).
For n >= 1, a(2^n) = A052548(n-1) = 2^(n-1) + 2.
For n >= 1, a(3^n) = A289521(n) = (3^n + 5)/2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) + 1)/4 = 0.5921081944... . - Amiram Eldar, Feb 22 2024

A291773 Domination number of the n-Apollonian network.

Original entry on oeis.org

1, 1, 3, 4, 7, 16, 43, 124, 367, 1096, 3283, 9844, 29527, 88576, 265723, 797164, 2391487, 7174456, 21523363, 64570084, 193710247, 581130736, 1743392203, 5230176604, 15690529807, 47071589416, 141214768243, 423644304724, 1270932914167, 3812798742496
Offset: 1

Views

Author

Eric W. Weisstein, Aug 31 2017

Keywords

Comments

Also, the connected domination number of the n-Apollonian network. - Andrew Howroyd, Jan 16 2018

Crossrefs

Cf. A298105.

Programs

  • Mathematica
    (* Start from Eric W. Weisstein, Jan 17 2018 *)
    Join[{1, 1}, Table[(3^(n - 3) + 5)/2, {n, 3, 20}]]
    Join[{1, 1}, Table[(3^n + 135)/54, {n, 3, 20}]]
    Join[{1, 1}, (3^Range[3, 20] + 135)/54]
    Join[{1, 1}, LinearRecurrence[{4, -3}, {3, 4}, 20]]
    CoefficientList[Series[(1 - 3 x + 2 x^2 - 5 x^3)/(1 - 4 x + 3 x^2), {x, 0, 20}], x]
    (* End *)
  • PARI
    \\ here d0..d3 are for 0..3 outside vertices included in dominating set.
    D(d0,d1,d2,d3) = {[min(3*d0,1+3*d1), min(d0+2*d1,1+d1+2*d2), min(2*d1+d2,1+2*d2+d3), min(3*d2,1+3*d3)]}
    a(n)={my(v=[1,0,0,0]); for(i=2,n,v=D(v[1],v[2],v[3],v[4])); min(min(v[1],1+v[2]),min(2+v[3],3+v[4]))} \\ Andrew Howroyd, Sep 01 2017
    
  • PARI
    Vec(x*(1 - 3*x + 2*x^2 - 5*x^3) / ((1 - x)*(1 - 3*x)) + O(x^40)) \\ Colin Barker, Oct 03 2017

Formula

a(n) = (3^(n-3) + 5) / 2 for n > 2. - Andrew Howroyd, Sep 01 2017
From Colin Barker, Oct 03 2017: (Start)
G.f.: x*(1 - 3*x + 2*x^2 - 5*x^3) / ((1 - x)*(1 - 3*x)).
a(n) = 4*a(n-1) - 3*a(n-2) for n>4.
(End)
a(n) = A289521(n-3) for n > 3. - Andrew Howroyd, Jan 16 2018

Extensions

a(7)-a(30) from Andrew Howroyd, Sep 01 2017

A289022 Wiener index of the n-Apollonian network.

Original entry on oeis.org

6, 27, 204, 1941, 19572, 198567, 1999056, 19931337, 196939572, 1930784091, 18802964760, 182062831005, 1754100012108, 16826739416271, 160799296563312, 1531421717572401, 14540848734272388, 137690120683444995, 1300613432805623496, 12258142039717884549
Offset: 1

Views

Author

Andrew Howroyd, Sep 02 2017

Keywords

Crossrefs

Cf. A067771 (edges), A192792, A289521, A289722.

Programs

  • Mathematica
    (* Start from Eric W. Weisstein, Sep 07 2017 *)
    Table[(6655 + 31 (-1)^n 2^(n + 2) + 5 3^(1 + 2 n) (24 + 11 n) + 3^(n + 1) (1197 + 55 n) + 5 2^(5 + n/2) Cos[n Pi/2] - 155 2^((3 + n)/2) Sin[n Pi/2])/3630, {n, 20}]
    LinearRecurrence[{23, -174, 448, -29, -1221, 2088, -4050, 2916}, {6, 27, 204, 1941, 19572, 198567, 1999056, 19931337}, 20]
    CoefficientList[Series[(6 - 111 x + 627 x^2 - 741 x^3 - 1497 x^4 + 2862 x^5 - 5670 x^6 + 8748 x^7)/((1 - x) (1 - 3 x)^2 (1 - 9 x)^2 (1 + 2 x) (1 + 2 x^2)), {x, 0, 20}], x]
    (* End *)
  • PARI
    R(dp, peq, p1, p2, x) = {[3*(dp - x + peq^2 + (2+7*x)*p1^2 + (7+2*x)*p2^2 + (4+2*x)*peq*p1 + 6*peq*p2 + 2*(4+5*x)*p1*p2 + x*(peq+3*p1+3*p2)), x*(1+3*p1), 2*(p1+p2), peq+p2]}
    A(n,x) = {my(v=[6*x,x,0,0,x]); for(i=2, n, v=R(v[1],v[2],v[3],v[4],x)); v[1]}
    Wiener(dp)=sum(i=1,poldegree(dp),i*polcoeff(dp,i));
    a(n) = Wiener(A(n,x));

Formula

a(n) = Sum_{k=1..1+floor(2*n/3)} k*A289722(n,k).
a(n) = 23*a(n-1) - 174*a(n-2) + 448*a(n-3) - 29*a(n-4) - 1221*a(n-5) + 2088*a(n-6) - 4050*a(n-7) + 2916*a(n-8).
G.f.: x*(6 - 111*x + 627*x^2 - 741*x^3 - 1497*x^4 + 2862*x^5 - 5670*x^6 + 8748*x^7)/((1 - x)*(1 - 3*x)^2*(1 - 9*x)^2*(1 + 2*x)*(1 + 2*x^2)).

A297558 Number of maximum matchings in the n-Apollonian network.

Original entry on oeis.org

3, 32, 738, 615514464, 5030805301520123200352256, 72175948705150863615789780847197889452411340074927861143342108815392768
Offset: 1

Views

Author

Eric W. Weisstein, Dec 31 2017

Keywords

Comments

From Andrew Howroyd, May 30 2025: (Start)
For n >= 3, the maximum size of a matching is given by A289521(n-1). For n < 3 the maximum size is n + 1.
Term a(7) has 208 decimal digits and a(8) has 618 decimal digits. (End)

Crossrefs

Programs

Extensions

a(5) onwards from Andrew Howroyd, May 30 2025

A205248 Number of (n+1) X 2 0..1 arrays with the number of clockwise edge increases in every 2 X 2 subblock the same.

Original entry on oeis.org

16, 40, 112, 328, 976, 2920, 8752, 26248, 78736, 236200, 708592, 2125768, 6377296, 19131880, 57395632, 172186888, 516560656, 1549681960, 4649045872, 13947137608, 41841412816, 125524238440, 376572715312, 1129718145928, 3389154437776
Offset: 1

Views

Author

R. H. Hardin, Jan 24 2012

Keywords

Comments

Also, the number of cliques in the n-Apollonian network. Cliques in this graph have a maximum size of 4. - Andrew Howroyd, Sep 02 2017

Examples

			Some solutions for n=4:
  1  0    0  1    1  1    0  1    1  1    1  1    1  0    1  0    1  1    1  1
  0  1    0  0    1  1    0  1    0  1    0  1    0  1    0  0    1  1    1  1
  1  0    1  1    1  1    0  1    0  1    0  0    1  0    0  1    1  1    1  1
  0  1    1  0    1  1    0  0    0  1    1  0    0  1    1  1    1  1    1  1
  1  0    0  0    1  1    0  1    1  1    1  1    1  0    0  1    1  1    1  1
		

Crossrefs

Column 1 of A205255.

Programs

Formula

a(n) = 4*a(n-1) - 3*a(n-2).
From Andrew Howroyd, Sep 02 2017: (Start)
a(n) = 4*(3^n + 1).
G.f.: 8*x*(2 - 3*x)/((1 - x)*(1 - 3*x)).
a(n) = 8*A007051(n).
a(n) = 1 + A289521(n) + A067771(n) + A003462(n+1) + A003462(n).
(End)
Showing 1-5 of 5 results.