cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A290103 a(n) = LCM of the prime indices in prime factorization of n, a(1) = 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 6, 1, 7, 2, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 6, 11, 1, 10, 7, 12, 2, 12, 8, 6, 3, 13, 4, 14, 5, 6, 9, 15, 2, 4, 3, 14, 6, 16, 2, 15, 4, 8, 10, 17, 6, 18, 11, 4, 1, 6, 10, 19, 7, 18, 12, 20, 2, 21, 12, 6, 8, 20, 6, 22, 3, 2, 13, 23, 4, 21, 14, 10, 5, 24, 6, 12, 9, 22, 15, 24, 2, 25, 4, 10, 3, 26, 14, 27, 6, 12
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2017

Keywords

Examples

			Here primepi (A000720) gives the index of its prime argument:
n = 14 = 2 * 7, thus a(14) = lcm(primepi(2), primepi(7)) = lcm(1,4) = 4.
n = 21 = 3 * 7, thus a(21) = lcm(primepi(3), primepi(7)) = lcm(2,4) = 4.
		

Crossrefs

Programs

Formula

a(1) = 1; for n > 1, a(n) = lcm(A055396(n), a(A028234(n))).
Other identities. For all n >= 1:
a(A007947(n)) = a(n).
a(A181819(n)) = A072411(n).

A290106 a(1) = 1; for n > 1, if n = Product prime(k)^e(k), then a(n) = Product (k)^(e(k)-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2017

Keywords

Examples

			For n = 21 = 3*7 = prime(2)^1 * prime(4)^1, a(n) = 2^0 * 4^0 = 1*1 = 1.
For n = 360 = 2^3 * 3^2 * 5^1 = prime(1)^3 * prime(2)^2 * prime(3)^1, a(n) = 1^2 * 2^1 * 3^0 = 1*2*1 = 2.
		

Crossrefs

Differs from A290104 for the first time at n=21.

Programs

Formula

Multiplicative with a(prime(k)^e) = k^(e-1).
a(n) = A003963(n) / A156061(n).
a(n) = A003963(A003557(n)) = A003963(n/A007947(n)).

A290105 a(n) = A156061(n) / A290103(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[n == 1, 1, Apply[Times, #]/Apply[LCM, #] &@ PrimePi[FactorInteger[n][[All, 1]]]], {n, 120}] (* Michael De Vlieger, Aug 14 2017 *)
  • Scheme
    (define (A290105 n) (/ (A156061 n) (A290103 n)))

Formula

a(n) = A156061(n) / A290103(n).

A316438 Heinz numbers of integer partitions whose product is strictly greater than the LCM of the parts.

Original entry on oeis.org

9, 18, 21, 25, 27, 36, 39, 42, 45, 49, 50, 54, 57, 63, 65, 72, 75, 78, 81, 84, 87, 90, 91, 98, 99, 100, 105, 108, 111, 114, 115, 117, 121, 125, 126, 129, 130, 133, 135, 144, 147, 150, 153, 156, 159, 162, 168, 169, 171, 174, 175, 180, 182, 183, 185, 189, 195
Offset: 1

Views

Author

Gus Wiseman, Jul 03 2018

Keywords

Comments

Also numbers n > 1 such that A290104(n) > 1.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of partitions whose product is greater than their LCM begins: (22), (221), (42), (33), (222), (2211), (62), (421), (322), (44), (331), (2221), (82), (422), (63), (22111), (332), (621), (2222), (4211).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,300],With[{pms=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Times@@pms/LCM@@pms>1]&]

A330225 Position of first appearance of n in A290103 = LCM of prime indices.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2020

Keywords

Comments

Appears to be the prime numbers (A000040) with 2 replaced by 1 and 37 replaced by 35.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

The version for product instead of lcm is A318871
The version for standard compositions is A333225.
The version for binary indices is A333492.
Let q(k) be the prime indices of k:
- The product of q(k) is A003963(k).
- The sum of q(k) is A056239(k).
- The terms of q(k) are row k of A112798.
- The GCD of q(k) is A289508(k).
- The LCM of q(k) is A290103(k).
- The LCM of q(k) + 1 is A328219(k).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    q=Table[If[n==1,1,LCM@@primeMS[n]],{n,100}];
    Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]

A316436 Sum divided by GCD of the integer partition with Heinz number n > 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 4, 1, 5, 5, 4, 1, 5, 1, 5, 3, 6, 1, 5, 2, 7, 3, 6, 1, 6, 1, 5, 7, 8, 7, 6, 1, 9, 4, 6, 1, 7, 1, 7, 7, 10, 1, 6, 2, 7, 9, 8, 1, 7, 8, 7, 5, 11, 1, 7, 1, 12, 4, 6, 3, 8, 1, 9, 11, 8, 1, 7, 1, 13, 8, 10, 9, 9, 1, 7, 4, 14, 1, 8, 10, 15, 6, 8, 1, 8, 5, 11, 13, 16, 11, 7, 1, 9, 9, 8, 1, 10, 1, 9, 9
Offset: 2

Views

Author

Gus Wiseman, Jul 03 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

Programs

  • Maple
    a:= n-> (l-> add(i, i=l)/igcd(l[]))(map(i->
          numtheory[pi](i[1])$i[2], ifactors(n)[2])):
    seq(a(n), n=2..100);  # Alois P. Heinz, Jul 03 2018
  • Mathematica
    Table[With[{pms=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]},Total[pms]/GCD@@pms],{n,2,100}]
  • PARI
    A316436(n) = { my(f = factor(n), pis = apply(p -> primepi(p), f[, 1]~), es = f[, 2]~, g = gcd(pis)); sum(i=1, #f~, pis[i]*es[i])/g; }; \\ Antti Karttunen, Sep 10 2018

Extensions

More terms from Antti Karttunen, Sep 10 2018

A319329 Heinz numbers of integer partitions, whose length is equal to the GCD of the parts and whose sum is equal to the LCM of the parts, in increasing order.

Original entry on oeis.org

2, 1495, 179417, 231133, 727531, 1378583, 1787387, 3744103, 4556993, 7566167, 18977519, 29629391, 30870587, 34174939, 39973571, 53508983, 70946617, 110779141, 138820187, 139681069, 170583017, 225817751, 409219217, 441317981, 493580417, 539462099, 544392433, 712797613, 802903541
Offset: 1

Views

Author

Gus Wiseman, Sep 17 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The corresponding sequence of partitions, whose length is equal to their GCD and whose sum is equal to their LCM: (1), (9,6,3), (20,8,8,4), (24,16,4,4), (16,16,12,4).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,10000],With[{m=If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]},And[LCM@@m==Total[m],GCD@@m==Length[m]]]&]

Extensions

More terms from Max Alekseyev, Jul 25 2024
Showing 1-7 of 7 results.