cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 80 results. Next

A290104 a(n) = A003963(n) / A290103(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2017

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k). Then a(n) is the product divided by the LCM of the integer partition with Heinz number n. - Gus Wiseman, Aug 01 2018

Examples

			n = 21 = 3 * 7 = prime(2) * prime(4), thus A003963(21) = 2*4 = 8, while A290103(21) = lcm(2,4) = 4, so a(21) = 8/4 = 2.
		

Crossrefs

Differs from A290106 for the first time at n=21.

Programs

  • Mathematica
    Table[If[n == 1, 1, Apply[Times, Map[PrimePi[#1]^#2 & @@ # &, #]] / Apply[LCM, PrimePi[#[[All, 1]] ]]] &@ FactorInteger@ n, {n, 120}] (* Michael De Vlieger, Aug 14 2017 *)
  • Scheme
    (define (A290104 n) (/ (A003963 n) (A290103 n)))

Formula

a(n) = A003963(n) / A290103(n).
Other identities. For all n >= 1:
a(A181819(n)) = A005361(n)/A072411(n).

A290105 a(n) = A156061(n) / A290103(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 13 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[n == 1, 1, Apply[Times, #]/Apply[LCM, #] &@ PrimePi[FactorInteger[n][[All, 1]]]], {n, 120}] (* Michael De Vlieger, Aug 14 2017 *)
  • Scheme
    (define (A290105 n) (/ (A156061 n) (A290103 n)))

Formula

a(n) = A156061(n) / A290103(n).

A319004 Number of ordered factorizations of n where the sequence of LCMs of the prime indices (A290103) of each factor is weakly increasing.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 4, 2, 2, 1, 4, 1, 2, 2, 8, 1, 5, 1, 4, 2, 2, 1, 8, 2, 2, 4, 4, 1, 5, 1, 16, 2, 2, 2, 11, 1, 2, 2, 8, 1, 5, 1, 4, 4, 2, 1, 16, 2, 5, 2, 4, 1, 12, 2, 8, 2, 2, 1, 11, 1, 2, 4, 32, 2, 5, 1, 4, 2, 5, 1, 23, 1, 2, 4, 4, 2, 5, 1, 16, 8, 2, 1, 11, 2, 2, 2, 8, 1, 12, 2, 4, 2, 2, 2, 32, 1, 5, 4, 11, 1, 5, 1, 8, 5
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2018

Keywords

Comments

Also the number of ordered multiset partitions of the multiset of prime indices of n where the sequence of LCMs of the parts is weakly increasing. If we form a multiorder by treating integer partitions (a,...,z) as multiarrows LCM(a,...,z) <= {z,...,a}, then a(n) is the number of triangles whose composite ground is the integer partition with Heinz number n.

Examples

			The a(60) = 11 ordered factorizations:
  (2*2*3*5),
  (2*2*15), (2*3*10), (2*6*5), (4*3*5),
  (2*30), (3*20), (4*15), (12*5), (6*10),
  (60).
The a(60) = 11 ordered multiset partitions:
     {{1,1,2,3}}
    {{1},{1,2,3}}
    {{2},{1,1,3}}
    {{1,1,2},{3}}
    {{1,1},{2,3}}
    {{1,2},{1,3}}
   {{1},{1},{2,3}}
   {{1},{2},{1,3}}
   {{1},{1,2},{3}}
   {{1,1},{2},{3}}
  {{1},{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    lix[n_]:=LCM@@PrimePi/@If[n==1,{},FactorInteger[n]][[All,1]];
    Table[Length[Select[Join@@Permutations/@facs[n],OrderedQ[lix/@#]&]],{n,100}]
  • PARI
    is_weakly_increasing(v) = { for(i=2,#v,if(v[i]A290103(n) = lcm(apply(p->primepi(p),factor(n)[,1]));
    A319004aux(n, facs) = if(1==n, is_weakly_increasing(apply(f -> A290103(f),Vec(facs))), my(s=0, newfacs); fordiv(n, d, if((d>1), newfacs = List(facs); listput(newfacs,d); s += A319004aux(n/d, newfacs))); (s));
    A319004(n) = if((1==n)||isprime(n),1,A319004aux(n, List([]))); \\ Antti Karttunen, Sep 23 2018

Formula

A001055(n) <= a(n) <= A074206(n). - Antti Karttunen, Sep 23 2018

Extensions

More terms from Antti Karttunen, Sep 23 2018

A330225 Position of first appearance of n in A290103 = LCM of prime indices.

Original entry on oeis.org

1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2020

Keywords

Comments

Appears to be the prime numbers (A000040) with 2 replaced by 1 and 37 replaced by 35.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

The version for product instead of lcm is A318871
The version for standard compositions is A333225.
The version for binary indices is A333492.
Let q(k) be the prime indices of k:
- The product of q(k) is A003963(k).
- The sum of q(k) is A056239(k).
- The terms of q(k) are row k of A112798.
- The GCD of q(k) is A289508(k).
- The LCM of q(k) is A290103(k).
- The LCM of q(k) + 1 is A328219(k).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    q=Table[If[n==1,1,LCM@@primeMS[n]],{n,100}];
    Table[Position[q,i][[1,1]],{i,First[Split[Union[q],#1+1==#2&]]}]

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A316413 Heinz numbers of integer partitions whose length divides their sum.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 37, 39, 41, 43, 46, 47, 49, 53, 55, 57, 59, 61, 62, 64, 67, 68, 71, 73, 78, 79, 81, 82, 83, 84, 85, 87, 88, 89, 90, 91, 94, 97, 98, 99, 100, 101, 103, 105, 107, 109, 110
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2018

Keywords

Comments

In other words, partitions whose average is an integer.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			Sequence of partitions whose length divides their sum begins (1), (2), (11), (3), (4), (111), (22), (31), (5), (6), (1111), (7), (8), (42), (51), (9), (33), (222), (411).
		

Crossrefs

Programs

  • Maple
    isA326413 := proc(n)
        psigsu := A056239(n) ;
        psigle := numtheory[bigomega](n) ;
        if modp(psigsu,psigle) = 0 then
            true;
        else
            false;
        end if;
    end proc:
    n := 1:
    for i from 2 to 3000 do
        if isA326413(i) then
            printf("%d %d\n",n,i);
            n := n+1 ;
        end if;
    end do: # R. J. Mathar, Aug 09 2019
    # second Maple program:
    q:= n-> (l-> nops(l)>0 and irem(add(i, i=l), nops(l))=0)(map
            (i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])):
    select(q, [$1..110])[];  # Alois P. Heinz, Nov 19 2021
  • Mathematica
    Select[Range[2,100],Divisible[Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]],PrimeOmega[#]]&]

A326568 Denominator of the average of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 3, 1, 3, 3, 1, 1, 5, 1, 3, 2, 3, 1, 4, 1, 4, 1, 2, 1, 4, 1, 1, 3, 1, 2, 3, 1, 1, 2, 3, 1, 5, 1, 2, 3, 3, 2, 1, 1, 5, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 1, 2, 6, 1, 1, 1, 1, 1, 3, 1, 4, 1, 2, 1, 5
Offset: 2

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 12 are {1,1,2}, with average 4/3, so a(12) = 3.
		

Crossrefs

a(n) is a divisor of Omega(n) = A001222(n).
Positions of 1's are A316413.

Programs

  • Mathematica
    Table[Denominator[Sum[q[[2]]*PrimePi[q[[1]]],{q,FactorInteger[n]}]/PrimeOmega[n]],{n,2,100}]
  • PARI
    A326568(n) = { my(f=factor(n)); denominator(sum(i=1,#f~,f[i,2]*primepi(f[i,1]))/bigomega(n)); }; \\ Antti Karttunen, Jan 28 2025

Extensions

Starting offset corrected from 0 to 2 and data section extended to a(108) by Antti Karttunen, Jan 28 2025

A326567 Numerator of the average of the multiset of prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 3, 4, 1, 2, 2, 5, 4, 6, 5, 5, 1, 7, 5, 8, 5, 3, 3, 9, 5, 3, 7, 2, 2, 10, 2, 11, 1, 7, 4, 7, 3, 12, 9, 4, 3, 13, 7, 14, 7, 7, 5, 15, 6, 4, 7, 9, 8, 16, 7, 4, 7, 5, 11, 17, 7, 18, 6, 8, 1, 9, 8, 19, 3, 11, 8, 20, 7, 21, 13, 8, 10, 9, 3, 22, 7, 2, 7
Offset: 2

Views

Author

Gus Wiseman, Jul 13 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 12 are {1,1,2}, with average 4/3, so a(12) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Numerator[Sum[q[[2]]*PrimePi[q[[1]]],{q,FactorInteger[n]}]/PrimeOmega[n]],{n,2,100}]

A305078 Heinz numbers of connected integer partitions.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 37, 39, 41, 43, 47, 49, 53, 57, 59, 61, 63, 65, 67, 71, 73, 79, 81, 83, 87, 89, 91, 97, 101, 103, 107, 109, 111, 113, 115, 117, 121, 125, 127, 129, 131, 133, 137, 139, 147, 149, 151, 157, 159, 163, 167
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. This sequence lists all Heinz numbers of multisets S such that G(S) is a connected graph.

Examples

			The sequence of all connected multiset multisystems (see A302242, A112798) begins:
   2: {{}}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
   9: {{1},{1}}
  11: {{3}}
  13: {{1,2}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  29: {{1,3}}
  31: {{5}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
  41: {{6}}
  43: {{1,4}}
  47: {{2,3}}
  49: {{1,1},{1,1}}
  53: {{1,1,1,1}}
  57: {{1},{1,1,1}}
  59: {{7}}
  61: {{1,2,2}}
  63: {{1},{1},{1,1}}
  65: {{2},{1,2}}
  67: {{8}}
  71: {{1,1,3}}
  73: {{2,4}}
  79: {{1,5}}
  81: {{1},{1},{1},{1}}
  83: {{9}}
  87: {{1},{1,3}}
  89: {{1,1,1,2}}
  91: {{1,1},{1,2}}
  97: {{3,3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Select[Range[300],Length[zsm[primeMS[#]]]==1&]

A305079 Number of connected components of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 2, 4, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 3, 1, 5, 2, 2, 2, 3, 1, 2, 1, 4, 1, 2, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 1, 4, 1, 2, 1, 6, 1, 3, 1, 3, 2, 3, 1, 4, 1, 2, 2, 3, 2, 2, 1, 5, 1, 2, 1, 3, 2, 2, 1
Offset: 1

Views

Author

Gus Wiseman, May 24 2018

Keywords

Comments

First differs from |A305052(n)| at a(169) = 1, A305052(169) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Given a finite multiset S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. If S is the integer partition with Heinz number n, a(n) is the number of connected components of G(S).

Examples

			The a(315) = 2 connected components of {2,2,3,4} are {{3},{2,2,4}}.
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[zsm[primeMS[n]]],{n,100}]
  • PARI
    zero_first_elem_and_connected_elems(ys) = { my(cs = List([ys[1]]), i=1); ys[1] = 0; while(i<=#cs, for(j=2,#ys,if(ys[j]&&(1!=gcd(cs[i],ys[j])), listput(cs,ys[j]); ys[j] = 0)); i++); (ys); };
    A007814(n) = valuation(n,2);
    A000265(n) = (n/2^A007814(n));
    A305079(n) = if(!(n%2),A007814(n)+A305079(A000265(n)), my(cs = apply(p -> primepi(p),factor(n)[,1]~), s=0); while(#cs, cs = select(c -> c, zero_first_elem_and_connected_elems(cs)); s++); (s)); \\ Antti Karttunen, Nov 10 2018

Formula

For all n, k > 0, we have a(2^n * k) = n + a(k).
For all x, y > 0, we have a(x * y) <= a(x) + a(y).
For x, y > 0 strongly coprime, we have a(x * y) = a(x) + a(y). Strongly coprime means every prime index of x is coprime to every prime index of y, where a prime index of n is a number m such that prime(m) divides n.
a(n) = A305501(A064989(n)) + A007814(n). - Antti Karttunen, Nov 10 2018

Extensions

Terms and Mathematica program corrected by Gus Wiseman, Nov 10 2018
Showing 1-10 of 80 results. Next