A290104 a(n) = A003963(n) / A290103(n).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 8, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 1, 1
Offset: 1
Keywords
Examples
n = 21 = 3 * 7 = prime(2) * prime(4), thus A003963(21) = 2*4 = 8, while A290103(21) = lcm(2,4) = 4, so a(21) = 8/4 = 2.
Links
Crossrefs
Programs
-
Mathematica
Table[If[n == 1, 1, Apply[Times, Map[PrimePi[#1]^#2 & @@ # &, #]] / Apply[LCM, PrimePi[#[[All, 1]] ]]] &@ FactorInteger@ n, {n, 120}] (* Michael De Vlieger, Aug 14 2017 *)
-
Scheme
(define (A290104 n) (/ (A003963 n) (A290103 n)))
Comments