cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A258210 Expansion of f(-q) * f(-q^2) * chi(-q^3) in powers of q where chi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, -1, -2, 0, 1, 4, 0, 0, -2, -4, 2, 0, 0, -2, 0, 0, 1, 4, 4, 0, -4, 0, 0, 0, 0, -3, -4, 0, 0, 4, 0, 0, -2, 0, 2, 0, 4, -2, 0, 0, 2, 4, 0, 0, 0, -8, 0, 0, 0, -1, -6, 0, 2, 4, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 1, 8, 0, 0, -4, 0, 0, 0, 4, -2, -4, 0, 0, 0, 0, 0, -4
Offset: 0

Views

Author

Michael Somos, May 23 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Denoted by a_6(n) in Kassel and Reutenauer 2015. - Michael Somos, Jun 04 2015

Examples

			G.f. = 1 - q - 2*q^2 + q^4 + 4*q^5 - 2*q^8 - 4*q^9 + 2*q^10 - 2*q^13 + ...
		

Crossrefs

For the square of this series see A252650.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q]^2 / (QPochhammer[ q, q^6] QPochhammer[ q^5, q^6]), {q, 0, n}];
    a[ n_] := SeriesCoefficient[ (1/2) EllipticThetaPrime[ 1, 0, q^(1/2)] / EllipticTheta[ 1, Pi/6, q^(1/2)], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^3 + A) / eta(x^6 + A), n))};
    
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * (1 - (n%3==2)*3) * sumdiv(n, d, [0, 1, 2, -1][d%4 + 1] * if(d%9, 1, 4) * (-1)^((d%8==6) + n+d)))}; /* Michael Somos, Jun 04 2015 */

Formula

Expansion of f(-q)^2 * f(-q^6) / f(-q, -q^5) in powers of q where f(,) is Ramanujan's general theta function.
Expansion of eta(q) * eta(q^2) * eta(q^3) / eta(q^6) in powers of q.
Euler transform of period 6 sequence [ -1, -2, -2, -2, -1, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (72 t)) = 12 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A121444.
G.f.: Product_{k>0} (1 - x^k) * (1 - x^2*k) / (1 + x^(3*k)).
a(n) = (-1)^n * A258228(n). Convolution inverse of A077285.
a(4*n + 3) = 0. a(6*n + 2) = -2 * A122865(n). a(6*n + 4) = A122856(n). a(12*n + 1) = -1 * A002175(n).
a(9*n + 3) = a(9*n + 6) = 0. a(9*n) = A104794(n). a(3*n + 1) = -A258277(n). a(3*n + 2) = -2*A258278(n). - Michael Somos, May 01 2016
G.f.: Product_{i>0} 1/(1 + Sum_{j>0} j*x^(j*i)). - Seiichi Manyama, Oct 08 2017

A290216 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 3, 2, 0, 1, 1, 3, 2, 2, 0, 1, 1, 3, 5, 6, 3, 0, 1, 1, 3, 5, 6, 7, 4, 0, 1, 1, 3, 5, 10, 10, 12, 5, 0, 1, 1, 3, 5, 10, 10, 18, 13, 6, 0, 1, 1, 3, 5, 10, 15, 22, 25, 22, 8, 0, 1, 1, 3, 5, 10, 15, 22, 29, 34, 26, 10, 0, 1, 1, 3, 5
Offset: 0

Views

Author

Seiichi Manyama, Oct 06 2017

Keywords

Examples

			Square array begins:
   1, 1, 1,  1,  1, ...
   0, 1, 1,  1,  1, ...
   0, 1, 3,  3,  3, ...
   0, 2, 2,  5,  5, ...
   0, 2, 6,  6, 10, ...
   0, 3, 7, 10, 10, ...
		

Crossrefs

Columns k=0..3 give A000007, A000009, A293204, A290269.
Rows n=0 gives A000012.
Main diagonal gives A077285.
Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^m: A290217 (m=-1), this sequence (m=1), A293377 (m=2).
Cf. A293305.

A293377 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^2.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 7, 6, 0, 1, 2, 7, 10, 9, 0, 1, 2, 7, 16, 25, 14, 0, 1, 2, 7, 16, 31, 38, 22, 0, 1, 2, 7, 16, 39, 62, 78, 32, 0, 1, 2, 7, 16, 39, 70, 117, 116, 46, 0, 1, 2, 7, 16, 39, 80, 149, 206, 206, 66, 0, 1, 2, 7, 16, 39, 80, 159, 262, 362
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   0,  2,  2,  2,  2, ...
   0,  3,  7,  7,  7, ...
   0,  6, 10, 16, 16, ...
   0,  9, 25, 31, 39, ...
   0, 14, 38, 62, 70, ...
		

Crossrefs

Columns k=0..1 give A000007, A022567.
Rows n=0 gives A000012.
Main diagonal gives A293378.
Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^m: A290217 (m=-1), A290216 (m=1), this sequence (m=2).

A290395 G.f.: Product_{m>0} 1/(1 + x^m + 2*x^(2*m) + 3*x^(3*m)).

Original entry on oeis.org

1, -1, -2, 0, 5, 1, -12, -3, 31, 13, -64, -57, 139, 164, -285, -458, 560, 1217, -950, -3176, 1396, 7786, -1129, -18607, -2378, 43043, 17680, -96655, -67957, 208061, 217269, -429510, -628868, 836424, 1710935, -1497065, -4434111, 2294633, 11061661, -2348910
Offset: 0

Views

Author

Seiichi Manyama, Oct 06 2017

Keywords

Crossrefs

Column k=3 of A290217.

Programs

  • PARI
    m = 30; Vec(prod(k=1, m, 1/(1 + x^k + 2*x^(2*k) + 3*x^(3*k))) + O(x^m)) \\ Michel Marcus, Oct 07 2017

A293386 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} 1/(1 + Sum_{j=1..k} j*x^(j*i))^2.

Original entry on oeis.org

1, 1, 0, 1, -2, 0, 1, -2, 1, 0, 1, -2, -3, -2, 0, 1, -2, -3, 10, 4, 0, 1, -2, -3, 4, -4, -4, 0, 1, -2, -3, 4, 14, -20, 5, 0, 1, -2, -3, 4, 6, -8, 41, -6, 0, 1, -2, -3, 4, 6, 16, -46, 2, 9, 0, 1, -2, -3, 4, 6, 6, -30, 14, -111, -12, 0, 1, -2, -3, 4, 6, 6, 0, -58
Offset: 0

Views

Author

Seiichi Manyama, Oct 07 2017

Keywords

Examples

			Square array begins:
   1,  1,   1,  1,  1, ...
   0, -2,  -2, -2, -2, ...
   0,  1,  -3, -3, -3, ...
   0, -2,  10,  4,  4, ...
   0,  4,  -4, 14,  6, ...
   0, -4, -20, -8, 16, ...
		

Crossrefs

Columns k=0..1 give A000007, A022597.
Rows n=0 gives A000012.
Main diagonal gives A252650.
Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^m: this sequence (m=-2), A290217 (m=-1), A290216 (m=1), A293377 (m=2).
Showing 1-5 of 5 results.