A309450
The successive approximations up to 7^n for 7-adic integer 2^(1/5).
Original entry on oeis.org
0, 4, 46, 95, 1124, 15530, 82758, 435705, 4553420, 27612624, 269734266, 1682110511, 9591417483, 9591417483, 9591417483, 4078929854577, 23069175894349, 122767967603152, 1053290023551980, 9195358013104225, 77588729125343083, 237173261720567085, 1354264989887135099
Offset: 0
a(1) = ( 4)_7 = 4,
a(2) = ( 64)_7 = 46,
a(3) = ( 164)_7 = 95,
a(4) = (3164)_7 = 1124.
Expansions of p-adic integers:
-
A:= op([1,3],padic:-rootp(x^5 -2, 7, 25)):
seq(add(A[i]*10^(i-1),i=1..n),n=0..25); # Robert Israel, Aug 04 2019
-
{a(n) = truncate((2+O(7^n))^(1/5))}
A290559
One of the two successive approximations up to 7^n for the 7-adic integer sqrt(2). These are the numbers congruent to 4 mod 7 (except for the initial 0).
Original entry on oeis.org
0, 4, 39, 235, 235, 12240, 79468, 667713, 3961885, 15491487, 15491487, 15491487, 7924798459, 77131234464, 561576286499, 4630914723593, 23621160763365, 189785813611370, 1352938383547405, 4609765579368303, 4609765579368303, 403571097067428308
Offset: 0
a(1) = ( 4)_7 = 4,
a(2) = ( 54)_7 = 39,
a(3) = ( 454)_7 = 235,
a(4) = ( 454)_7 = 235,
a(5) = (50454)_7 = 12240.
A309451
The successive approximations up to 7^n for 7-adic integer 3^(1/5).
Original entry on oeis.org
0, 5, 26, 75, 1104, 3505, 20312, 20312, 4961570, 28020774, 229788809, 512264058, 2489590801, 71696026806, 71696026806, 71696026806, 19061942066578, 218459525484184, 451090039471391
Offset: 0
a(1) = ( 5)_7 = 5,
a(2) = ( 35)_7 = 26,
a(3) = ( 135)_7 = 75,
a(4) = (3135)_7 = 1104.
Expansions of p-adic integers:
A309452
The successive approximations up to 7^n for 7-adic integer 4^(1/5).
Original entry on oeis.org
0, 2, 9, 107, 450, 450, 67678, 655923, 2303009, 13832611, 54186218, 1749037712, 13612998170, 27454285371, 124343295778, 4193681732872, 18436366262701, 217833949680307, 1380986519616342, 3009400117526791, 3009400117526791, 162593932712750793, 3513869117212454835
Offset: 0
a(1) = ( 2)_7 = 2,
a(2) = ( 12)_7 = 9,
a(3) = ( 212)_7 = 107,
a(4) = (1212)_7 = 450.
Expansions of p-adic integers:
A309453
The successive approximations up to 7^n for 7-adic integer 5^(1/5).
Original entry on oeis.org
0, 3, 45, 339, 1368, 8571, 42185, 630430, 4748145, 27807349, 27807349, 1722658843, 13586619301, 41269193703, 235047214517, 2269716433064, 30755085492722, 230152668910328, 928044210871949, 2556457808782398, 36753143364901827, 196337675960125829, 2430521132293261857
Offset: 0
a(1) = ( 3)_7 = 3,
a(2) = ( 63)_7 = 45,
a(3) = ( 663)_7 = 339,
a(4) = (3663)_7 = 1368.
Expansions of p-adic integers:
A309454
The successive approximations up to 7^n for 7-adic integer 6^(1/5).
Original entry on oeis.org
0, 6, 20, 265, 1980, 11584, 11584, 246882, 1070425, 29894430, 29894430, 1159795426, 9069102398, 9069102398, 202847123212, 2237516341759, 2237516341759, 201635099759365, 1132157155708193, 6017397949439540, 17416293134812683, 496169890920484689, 1613261619087052703
Offset: 0
a(1) = ( 6)_7 = 6,
a(2) = ( 26)_7 = 20,
a(3) = ( 526)_7 = 265,
a(4) = (5526)_7 = 1980.
Expansions of p-adic integers:
A318960
One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 1 (mod 4) case.
Original entry on oeis.org
1, 5, 5, 21, 53, 53, 181, 181, 181, 181, 181, 181, 181, 16565, 49333, 49333, 49333, 49333, 573621, 1622197, 1622197, 1622197, 10010805, 10010805, 10010805, 77119669, 211337397, 479772853, 479772853, 479772853, 2627256501, 6922223797, 15512158389, 15512158389
Offset: 2
The unique number k in [1, 4] and congruent to 1 modulo 4 such that k^2 + 7 is divisible by 8 is 1, so a(2) = 1.
a(2)^2 + 7 = 8 which is not divisible by 16, so a(3) = a(2) + 2^2 = 5.
a(3)^2 + 7 = 32 which is divisible by 32, so a(4) = a(3) = 5.
a(4)^2 + 7 = 32 which is divisible by 64, so a(5) = a(4) + 2^4 = 21.
a(5)^2 + 7 = 448 which is divisible by 128, so a(6) = a(5) + 2^5 = 53.
...
Expansions of p-adic integers:
this sequence,
A318961 (2-adic, sqrt(-7));
Also expansions of 10-adic integers:
A318961
One of the two successive approximations up to 2^n for 2-adic integer sqrt(-7). This is the 3 (mod 4) case.
Original entry on oeis.org
3, 3, 11, 11, 11, 75, 75, 331, 843, 1867, 3915, 8011, 16203, 16203, 16203, 81739, 212811, 474955, 474955, 474955, 2572107, 6766411, 6766411, 23543627, 57098059, 57098059, 57098059, 57098059, 593968971, 1667710795, 1667710795, 1667710795, 1667710795, 18847579979
Offset: 2
The unique number k in [1, 4] and congruent to 3 modulo 4 such that k^2 + 7 is divisible by 8 is 3, so a(2) = 3.
a(2)^2 + 7 = 16 which is divisible by 16, so a(3) = a(2) = 3.
a(3)^2 + 7 = 16 which is not divisible by 32, so a(4) = a(3) + 2^3 = 11.
a(4)^2 + 7 = 128 which is divisible by 64, so a(5) = a(4) = 11.
a(5)^2 + 7 = 128 which is divisible by 128, so a(6) = a(5) = 11.
...
Expansions of p-adic integers:
A318960, this sequence (2-adic, sqrt(-7));
Also expansions of 10-adic integers:
A034945
Successive approximations to 7-adic integer sqrt(2).
Original entry on oeis.org
0, 3, 10, 108, 2166, 4567, 38181, 155830, 1802916, 24862120, 266983762, 1961835256, 5916488742, 19757775943, 116646786350, 9611769806236, 42844700375837, 275475214363044, 6789129606004840, 75182500718243698
Offset: 0
- K. Mahler, Introduction to p-Adic Numbers and Their Functions, Cambridge, 1973, p. 35.
-
seq(n)={my(v=vector(n), i=1, k=0); while(i<#v, k++; my(t=truncate(sqrt(2 + O(7^k)))); if(t > v[i], i++; v[i]=t)); v} \\ Andrew Howroyd, Nov 03 2018
-
def a034945(n):
ary=[0]
a, mod=3, 7
while len(ary) - 1Indranil Ghosh, Aug 03 2017, after Ruby
-
def A034945(n)
ary = [0]
a, mod = 3, 7
while ary.size - 1 < n
b = a % mod
ary << b if b != ary[-1]
a = b * b + b - 2
mod *= 7
end
ary
end
p A034945(100) # Seiichi Manyama, Aug 03 2017
Showing 1-9 of 9 results.
Comments