cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A145453 Exponential transform of binomial(n,3) = A000292(n-2).

Original entry on oeis.org

1, 0, 0, 1, 4, 10, 30, 175, 1176, 7084, 42120, 286605, 2270180, 19213766, 166326524, 1497096055, 14374680880, 147259920760, 1582837679056, 17659771122969, 204674606377140, 2473357218561250, 31148510170120420, 407154732691440811, 5504706823227724904
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2008

Keywords

Comments

a(n) is the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box 3 balls are seen at the top.
a(n) is also the number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains 3 labels.

Crossrefs

3rd column of A145460, A143398.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1) *binomial(j,3) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    Table[Sum[BellY[n, k, Binomial[Range[n], 3]], {k, 0, n}], {n, 0, 25}] (* Vladimir Reshetnikov, Nov 09 2016 *)

Formula

E.g.f.: exp(exp(x)*x^3/3!).

A292978 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = k! * Sum_{i=0..n-1} binomial(n-1,i) * binomial(i+1,k) * T(n-1-i,k) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 3, 5, 1, 0, 2, 10, 15, 1, 0, 0, 6, 41, 52, 1, 0, 0, 6, 24, 196, 203, 1, 0, 0, 0, 24, 140, 1057, 877, 1, 0, 0, 0, 24, 60, 870, 6322, 4140, 1, 0, 0, 0, 0, 120, 480, 5922, 41393, 21147, 1, 0, 0, 0, 0, 120, 360, 5250, 45416, 293608, 115975
Offset: 0

Views

Author

Seiichi Manyama, Sep 27 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   1,  1,  0,  0,  0, ...
   2,  3,  2,  0,  0, ...
   5, 10,  6,  6,  0, ...
  15, 41, 24, 24, 24, ...
		

Crossrefs

Columns k=0-4 give: A000110, A000248, A216507, A292889, A292979.
Rows n=0 gives A000012.
Main diagonal gives A000142.
Cf. A292973.

Programs

  • Ruby
    def f(n)
      return 1 if n < 2
      (1..n).inject(:*)
    end
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << f(k) * (0..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ncr(j + 1, k) * ary[i - 1 - j]}}
      ary
    end
    def A292978(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A292978(20)

Formula

T(n,k) = n! * Sum_{j=0..floor(n/k)} j^(n-k*j)/(j! * (n-k*j)!) for k > 0. - Seiichi Manyama, Jul 10 2022

A292908 Expansion of e.g.f. exp(x^3 * exp(-x)).

Original entry on oeis.org

1, 0, 0, 6, -24, 60, 240, -4830, 39984, -180936, -605520, 24616350, -318005160, 2385790836, -86488584, -350543790870, 6917020827360, -79778558317200, 357117438258144, 9237998478286134, -304182278908538040, 5166739059890655660, -48968796671246843160
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2017

Keywords

Crossrefs

Column k=3 of A292973.
Cf. A292889.

Programs

  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x^3*exp(-x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (-k)^(n-3*k)/(k!*(n-3*k)!)); \\ Seiichi Manyama, Jul 10 2022

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (-k)^(n-3*k)/(k! * (n-3*k)!). - Seiichi Manyama, Jul 10 2022

A358081 Expansion of e.g.f. 1/(1 - x^3 * exp(x)).

Original entry on oeis.org

1, 0, 0, 6, 24, 60, 840, 10290, 80976, 847224, 13306320, 190271070, 2677088040, 46082426676, 874515884424, 16582066303530, 336875275380000, 7539189088358640, 176554878235711776, 4295134487197296054, 111114287924643309240, 3036073975138066955820
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[1/(1-x^3 Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 12 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x^3*exp(x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, k^(n-3*k)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} k^(n - 3*k)/(n - 3*k)!.
a(n) ~ n! / ((1 + LambertW(1/3)) * 3^(n+1) * LambertW(1/3)^n). - Vaclav Kotesovec, Oct 30 2022

A292891 Expansion of e.g.f. exp(x^3 * (exp(x) - 1)).

Original entry on oeis.org

1, 0, 0, 0, 24, 60, 120, 210, 20496, 181944, 1059120, 4990590, 100458600, 1634594676, 18436740504, 164378216730, 2124284725920, 38171412643440, 631390188466656, 8760417873485814, 124649582165430840, 2167585391936047020, 41833303600025220360
Offset: 0

Views

Author

Seiichi Manyama, Sep 26 2017

Keywords

Crossrefs

Column k=3 of A292892.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x^3 (Exp[x]-1)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Feb 21 2022 *)
  • PARI
    x='x+O('x^66); Vec(serlaplace(exp(x^3*(exp(x)-1))))
    
  • PARI
    a(n) = n!*sum(k=0, n\4, stirling(n-3*k, k, 2)/(n-3*k)!); \\ Seiichi Manyama, Jul 09 2022
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=4, i, j/(j-3)!*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Jul 09 2022

Formula

From Seiichi Manyama, Jul 09 2022: (Start)
a(n) = n! * Sum_{k=0..floor(n/4)} Stirling2(n-3*k,k)/(n-3*k)!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=4..n} k/(k-3)! * a(n-k)/(n-k)!. (End)

A355575 a(n) = n! * Sum_{k=0..floor(n/3)} k^(n - 3*k)/k!.

Original entry on oeis.org

1, 0, 0, 6, 24, 120, 1080, 10080, 120960, 1874880, 34473600, 738460800, 17982518400, 489858969600, 14834839219200, 498452777222400, 18583796335104000, 768773914900992000, 35220800475250790400, 1779227869201400217600, 98469904378626772992000
Offset: 0

Views

Author

Seiichi Manyama, Sep 17 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n!*Sum[k^(n - 3*k)/k!, {k, 0, n/3}], {n, 1, 20}]] (* Vaclav Kotesovec, Oct 30 2022 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, k^(n-3*k)/k!);
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, x^(3*k)/(k!*(1-k*x)))))

Formula

E.g.f.: Sum_{k>=0} x^(3*k) / (k! * (1 - k * x)).
a(n) ~ sqrt(Pi) * exp((n - 1/2)/LambertW(exp(3/4)*(2*n - 1)/8) - 2*n) * n^(2*n + 1/2) / (sqrt(1 + LambertW(exp(3/4)*(2*n - 1)/8)) * 2^(2*n + 1/2) * LambertW(exp(3/4)*(2*n - 1)/8)^n). - Vaclav Kotesovec, Oct 30 2022

A362703 Expansion of e.g.f. 1/(1 + LambertW(-x^3 * exp(x))).

Original entry on oeis.org

1, 0, 0, 6, 24, 60, 1560, 20370, 161616, 2601144, 53827920, 829605150, 14894289960, 360575394036, 8234733389064, 188800085076330, 5145737430116640, 148419618327231600, 4278452209330445856, 134018446273097264694, 4529883358179857555640
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-x^3*exp(x)))))

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} k^(n-2*k) / (k! * (n-3*k)!).

A366546 Expansion of e.g.f. -log(1 - x^3 * exp(x)).

Original entry on oeis.org

0, 0, 0, 6, 24, 60, 480, 5250, 40656, 363384, 4839120, 65198430, 859543080, 13311494196, 233478687624, 4190929145130, 79746180437280, 1667320408619760, 36965002127643936, 854734007793179574, 20962277675893792440, 544839141515795731500
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=1, n\3, k^(n-3*k-1)/(n-3*k)!);

Formula

a(n) = n! * Sum_{k=1..floor(n/3)} k^(n-3*k-1)/(n-3*k)!.
Showing 1-8 of 8 results.