cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A064114 Unitary weird numbers: unitary abundant (A034683) but not unitary pseudoperfect (A293188).

Original entry on oeis.org

70, 4030, 5390, 5830, 10430, 10570, 10990, 11410, 11690, 11830, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17010, 17570, 17990, 18410, 18830, 18970, 19390, 19670, 19810, 20230, 20510, 21490, 21770, 21910
Offset: 1

Views

Author

Naohiro Nomoto, Sep 08 2001

Keywords

Comments

Terms that are not (regular) weird (A006037): 5390, 11830, 17010, 20230, 25270, 37030, 51030, 58870, 67270, 93170, 95830, ... - Amiram Eldar, Dec 01 2018
Conjecture: All the terms are divisible by 10 (tested on the first 10^6 terms). - Amiram Eldar, Oct 19 2019
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are , 0, 1, 1, 4, 205, 1680, 14302, 165369, 1682383, 16326260, ... . Apparently, the asymptotic density of this sequence exists and equals 0.0016... . - Amiram Eldar, Jan 24 2023

Examples

			70 is in the sequence since the sum of its proper unitary divisors, 1, 2, 5, 7, 10, 14, 35 is 74 > 70, yet no subset of these divisors has the sum 74.
		

Crossrefs

Programs

  • Mathematica
    udiv[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; weirdQ[n_] := Module[{d = Most[udiv[n]]}, If[Total[d] < n, False, c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; c == 0]]; Select[Range[100000], weirdQ] (* Amiram Eldar, Dec 01 2018 *)

Extensions

a(25)-a(38) from Amiram Eldar, Dec 01 2018

A335140 Unitary pseudoperfect numbers (A293188) that are nonsquarefree.

Original entry on oeis.org

60, 90, 150, 294, 420, 630, 660, 726, 750, 780, 840, 924, 990, 1014, 1020, 1050, 1092, 1140, 1170, 1380, 1386, 1428, 1470, 1530, 1596, 1638, 1650, 1710, 1734, 1740, 1860, 1890, 1950, 2058, 2070, 2142, 2166, 2220, 2394, 2460, 2550, 2580, 2610, 2790, 2820, 2850
Offset: 1

Views

Author

Amiram Eldar, May 25 2020

Keywords

Comments

The pseudoperfect numbers (A005835) that are squarefree are also unitary pseudoperfect numbers (A293188) since all of their divisors are unitary.

Examples

			60 is a term since it is nonsquarefree (it is divisible by 4 = 2^2) and it is equal to a sum of its aliquot unitary divisors: 1 + 3 + 4 + 5 + 12 + 15 + 20 = 60.
		

Crossrefs

Intersection of A013929 and A293188.
Subsequence of A005835.

Programs

  • Mathematica
    pspQ[n_] := !SquareFreeQ[n] && Module[{d = Most @ Select[Divisors[n], CoprimeQ[#, n/#] &], x}, Plus @@ d >= n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] > 0]; Select[Range[1000], pspQ]

A335141 Numbers that are both unitary pseudoperfect (A293188) and nonunitary pseudoperfect (A327945).

Original entry on oeis.org

840, 2940, 7260, 9240, 10140, 10920, 13860, 14280, 15960, 16380, 17160, 18480, 19320, 20580, 21420, 21840, 22440, 23100, 23940, 24024, 24360, 25080, 26040, 26520, 27300, 28560, 29640, 30360, 30870, 31080, 31920, 32340, 34440, 34650, 35700, 35880, 36120, 36960
Offset: 1

Views

Author

Amiram Eldar, May 25 2020

Keywords

Comments

All the terms are nonsquarefree (since squarefree numbers do not have nonunitary divisors).
All the terms are either 3-abundant numbers (A068403) or 3-perfect numbers (A005820). None of the 6 known 3-perfect numbers are terms of this sequence. If there is a term that is 3-perfect, it is also a unitary perfect (A002827) and a nonunitary perfect (A064591).

Examples

			840 is a term since its aliquot unitary divisors are {1, 3, 5, 7, 8, 15, 21, 24, 35, 40, 56, 105, 120, 168, 280} and 1 + 5 + 7 + 8 + 15 + 35 + 40 + 56 + 105 + 120 + 168 + 280 = 840, and its nonunitary divisors are {2, 4, 6, 10, 12, 14, 20, 28, 30, 42, 60, 70, 84, 140, 210, 420} and 70 + 140 + 210 + 420 = 840.
		

Crossrefs

Intersection of A293188 and A327945.
Subsequence of A335140.

Programs

  • Mathematica
    pspQ[n_] := Module[{d = Divisors[n], ud, nd, x}, ud = Select[d, CoprimeQ[#, n/#] &]; nd = Complement[d, ud]; ud = Most[ud]; Plus @@ ud >= n && Plus @@ nd >= n && SeriesCoefficient[Series[Product[1 + x^ud[[i]], {i, Length[ud]}], {x, 0, n}], n] > 0 && SeriesCoefficient[Series[Product[1 + x^nd[[i]], {i, Length[nd]}], {x, 0, n}], n] > 0]; Select[Range[10^4], pspQ]

A002827 Unitary perfect numbers: numbers k such that usigma(k) - k = k.

Original entry on oeis.org

6, 60, 90, 87360, 146361946186458562560000
Offset: 1

Views

Author

Keywords

Comments

d is a unitary divisor of k if gcd(d,k/d)=1; usigma(k) is their sum (A034448).
The prime factors of a unitary perfect number (A002827) are the Higgs primes (A057447). - Paul Muljadi, Oct 10 2005
It is not known if a(6) exists. - N. J. A. Sloane, Jul 27 2015
Frei proved that if there is a unitary perfect number that is not divisible by 3, then it is divisible by 2^m with m >= 144, it has at least 144 distinct odd prime factors, and it is larger than 10^440. - Amiram Eldar, Mar 05 2019
Conjecture: Subsequence of A083207 (Zumkeller numbers). Verified for all present terms. - Ivan N. Ianakiev, Jan 20 2020

Examples

			Unitary divisors of 60 are 1,4,3,5,12,20,15,60, with sum 120 = 2*60.
146361946186458562560000 = 2^18 * 3 * 5^4 * 7 * 11 * 13 * 19 * 37 * 79 * 109 * 157 * 313.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B3.
  • F. Le Lionnais, Les Nombres Remarquables. Paris: Hermann, p. 59, 1983.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section III.45.1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 147-148.

Crossrefs

Subsequence of the following sequences: A003062, A290466 (seemingly), A293188, A327157, A327158.
Gives the positions of ones in A327159.

Programs

  • Mathematica
    usnQ[n_]:=Total[Select[Divisors[n],GCD[#,n/#]==1&]]==2n; Select[Range[ 90000],usnQ] (* This will generate the first four terms of the sequence; it would take a very long time to attempt to generate the fifth term. *) (* Harvey P. Dale, Nov 14 2012 *)
  • PARI
    is(n)=sumdivmult(n, d, if(gcd(d, n/d)==1, d))==2*n \\ Charles R Greathouse IV, Aug 01 2016

Formula

If m is a term and omega(m) = A001221(m) = k, then m < 2^(2^k) (Goto, 2007). - Amiram Eldar, Jun 06 2020

A306983 Infinitary pseudoperfect numbers: numbers n equal to the sum of a subset of their proper infinitary divisors.

Original entry on oeis.org

6, 24, 30, 40, 42, 54, 56, 60, 66, 72, 78, 88, 90, 96, 102, 104, 114, 120, 138, 150, 168, 174, 186, 210, 216, 222, 246, 258, 264, 270, 280, 282, 294, 312, 318, 330, 354, 360, 366, 378, 384, 390, 402, 408, 420, 426, 438, 440, 456, 462, 474, 480, 486, 498, 504
Offset: 1

Views

Author

Amiram Eldar, Mar 18 2019

Keywords

Comments

Subsequence of A005835.

Crossrefs

Programs

  • Mathematica
    idivs[x_] := If[x == 1, 1, Sort@Flatten@Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]]; s = {}; Do[d = Most[idivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[s, n]], {n, 2, 1000}]; s

A318100 Exponential pseudoperfect numbers: numbers n equal to the sum of a subset of their proper exponential divisors.

Original entry on oeis.org

36, 180, 252, 396, 468, 612, 684, 828, 900, 1044, 1116, 1260, 1332, 1476, 1548, 1692, 1764, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3600, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4356, 4500
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2018

Keywords

Examples

			900 is in the sequence since its proper exponential divisors are 30, 60, 90, 150, 180, 300, 450 and 900 = 150 + 300 + 450.
		

Crossrefs

The exponential version of A005835. A054979 is a subsequence.

Programs

  • Mathematica
    dQ[n_,m_] := (n>0&&m>0 &&Divisible[n,m]); expDivQ[n_,d_] := Module[ {ft=FactorInteger[n]}, And@@MapThread[dQ, {ft[[;;,2]], IntegerExponent[ d,ft[[;;,1]]]} ]]; eDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d,expDivQ[n,#]&] ]; esigma[1]=1; esigma[n_] := Total@eDivs[n]; eDeficientQ[n_] := esigma[n] < 2n; a = {}; n = 0; While[Length[a] < 30, n++; If[eDeficientQ[n], Continue[]]; d = Most[eDivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[a, n]]]; a
  • PARI
    ediv(n,f=factor(n))=my(v=List(),D=apply(divisors,f[,2]~),t=#f~); forvec(u=vector(t,i,[1,#D[i]]), listput(v,prod(j=1,t,f[j,1]^D[j][u[j]]))); Set(v)
    is(n)=my(e=ediv(n)); e=e[1..#e-1]; forsubset(#e, v, if(vecsum(vecextract(e,v))==n, return(1))); 0 \\ Charles R Greathouse IV, Oct 29 2018

A327945 Nonunitary pseudoperfect numbers: numbers that are equal to the sum of a subset of their nonunitary divisors.

Original entry on oeis.org

24, 36, 48, 72, 80, 96, 108, 112, 120, 144, 160, 168, 180, 192, 200, 216, 224, 240, 252, 264, 288, 300, 312, 320, 324, 336, 352, 360, 384, 392, 396, 400, 408, 416, 432, 448, 456, 468, 480, 504, 528, 540, 552, 560, 576, 588, 600, 612, 624, 640, 648, 672, 684
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2019

Keywords

Comments

The nonunitary version of A005835.

Examples

			36 is in the sequence since its nonunitary divisors are 2, 3, 6, 12, 18 and 36 = 6 + 12 + 18.
		

Crossrefs

Supersequence of A064591.

Programs

  • Mathematica
    nudiv[n_] := Module[{d = Divisors[n]}, Select[d, GCD[#, n/#] > 1 &]]; s = {}; Do[d = nudiv[n]; If[Total[d] < n, Continue[]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[s, n]], {n, 1, 700}]; s

A295829 Unitary pseudoperfect numbers that equal to the sum of a subset of their aliquot unitary divisors in a single way.

Original entry on oeis.org

6, 60, 78, 90, 102, 114, 138, 150, 174, 186, 222, 246, 258, 282, 294, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 726, 750, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1014, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1338
Offset: 1

Views

Author

Amiram Eldar, Nov 28 2017

Keywords

Comments

The unitary version of A064771.
It appears that most of the terms are divisible by 3. Terms that are not divisible by 3 are 3770, 5530, 7210, 7630, ... - Michel Marcus, Dec 15 2017
The least odd term is 442365. - Amiram Eldar, Jun 10 2020

Examples

			150 is in the sequence since its aliquot unitary divisors are 1, 2, 3, 6, 25, 50, 75 and there is only one subset whose sum is 150: {25, 50, 75}.
		

Crossrefs

Programs

  • Mathematica
    ud[n_] := Block[{d = Divisors[n]}, Select[d, GCD[#, n/#] == 1 &]];
    a = {}; n = 0; While[Length[a] < 100, n++; d = Most[ud[n]];
    c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c ==1, AppendTo[a, n]]]; a

A342398 Numbers k such that there is a subset of the nontrivial unitary divisors of k, {d|k : 1 < d < k, gcd(d, k/d) = 1}, that adds up to k.

Original entry on oeis.org

30, 42, 66, 78, 102, 114, 138, 150, 174, 186, 210, 222, 246, 258, 282, 294, 318, 330, 354, 366, 390, 402, 420, 426, 438, 462, 474, 498, 510, 534, 546, 570, 582, 606, 618, 630, 642, 654, 660, 678, 690, 714, 726, 750, 762, 770, 780, 786, 798, 822, 834, 840, 858
Offset: 1

Views

Author

Amiram Eldar, Mar 10 2021

Keywords

Examples

			30 is a term since its proper unitary divisors, 1 < d < 30, are {2, 3, 5, 6, 10, 15}, and 5 + 10 + 15 = 30.
		

Crossrefs

The unitary version of A136446.
Subsequence of A034683 and A293188.

Programs

  • Mathematica
    q[n_] := Module[{d = Most @ Select[Divisors[n], CoprimeQ[#, n/#] &], x}, Plus @@ d >= n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, 2, Length[d]}], {x, 0, n}], n] > 0]; Select[Range[1000], q]

A334406 Unitary pseudoperfect numbers k such that there is a subset of unitary divisors of k whose sum is 2*k and for each d in this subset k/d is also in it.

Original entry on oeis.org

6, 60, 90, 210, 330, 546, 660, 714, 1770, 2310, 2730, 3198, 3486, 3570, 3990, 4290, 4620, 4830, 5460, 5610, 6006, 6090, 6270, 6510, 6630, 6930, 7140, 7410, 7590, 7770, 7854, 7980, 8190, 8580, 8610, 8778, 8970, 9030, 9240, 9570, 9660, 9690, 9870, 10374, 10626, 10710
Offset: 1

Views

Author

Amiram Eldar, Apr 27 2020

Keywords

Comments

Includes all the unitary perfect numbers (A002827).
The squarefree terms of A334405 are also terms of this sequence. Terms that are not squarefree are 60, 90, 660, 4620, 5460, 6930, 7140, 7980, 8190, 8580, 9240, 9660, ...

Examples

			210 is a term since {1, 2, 3, 14, 15, 70, 105, 210} is a subset of its unitary divisors whose sum is 420 = 2 * 210, and for each divisor d in this subset 210/d is also in it: 1 * 210 = 2 * 105 = 3 * 70 = 14 * 15 = 210.
		

Crossrefs

Subsequence of A293188 and A334405.
A002827 is a subsequence.
Cf. A077610.

Programs

  • Mathematica
    seqQ[n_] := Module[{d = Select[Divisors[n], CoprimeQ[#, n/#] &]}, nd = Length[d]; divpairs = d[[1 ;; nd/2]] + d[[-1 ;; nd/2 + 1 ;; -1]]; SeriesCoefficient[Series[Product[1 + x^divpairs[[i]], {i, Length[divpairs]}], {x, 0, 2*n}], 2*n] > 0]; Select[Range[2, 1000], seqQ]
Showing 1-10 of 15 results. Next