cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A293813 Number of partitions of n into nontrivial divisors of n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 3, 1, 2, 0, 11, 0, 2, 2, 9, 0, 14, 0, 15, 2, 2, 0, 79, 1, 2, 4, 19, 0, 93, 0, 35, 2, 2, 2, 279, 0, 2, 2, 157, 0, 153, 0, 27, 24, 2, 0, 1075, 1, 28, 2, 31, 0, 254, 2, 261, 2, 2, 0, 7025, 0, 2, 31, 201, 2, 320, 0, 39, 2, 301, 0, 12071, 0, 2, 35, 43, 2, 427, 0, 3073
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 16 2017

Keywords

Examples

			a(6) = 2 because 6 has 4 divisors {1, 2, 3, 6} among which 2 are nontrivial divisors {2, 3} therefore we have [3, 3] and [2, 2, 2].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1, n})[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 16 2017
  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[Product[1/(1 - Boole[d[[k]] != 1 && d[[k]] != n] x^d[[k]]), {k, Length[d]}], {x, 0, n}], x, n], {n, 0, 80}]

Formula

a(n) = [x^n] Product_{d|n, 1 < d < n} 1/(1 - x^d).
a(n) = A211110(n) - 1 for n > 1.

A294137 Number of compositions (ordered partitions) of n into nontrivial divisors of n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 2, 0, 5, 1, 2, 0, 50, 0, 2, 2, 55, 0, 185, 0, 243, 2, 2, 0, 8903, 1, 2, 19, 1219, 0, 48824, 0, 5271, 2, 2, 2, 1323569, 0, 2, 2, 369182, 0, 1659512, 0, 36636, 5111, 2, 0, 254187394, 1, 53535, 2, 223502, 0, 65005979, 2, 16774462, 2, 2, 0, 235105418684, 0, 2, 41386, 47350055, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 23 2017

Keywords

Examples

			a(8) = 5 because 8 has 4 divisors {1, 2, 4, 8} among which 2 are nontrivial divisors {2, 4} therefore we have [4, 4], [4, 2, 2], [2, 4, 2], [2, 2, 4] and [2, 2, 2, 2].
		

Crossrefs

Programs

  • Mathematica
    Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[d[[k]] != 1 && d[[k]] != n] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 65}]

Formula

a(n) = [x^n] 1/(1 - Sum_{d|n, 1 < d < n} x^d).

A300547 a(n) = [x^n] Product_{d|n} (1 - x^d).

Original entry on oeis.org

1, -1, -1, -1, -1, -1, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, -1, -2, -1, -2, -1, -1, -1, -1, -1, -2, -1, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, -3, -1, -1, -1, -1, -1, -2, -1, -1, -1, -1, -1, -5, -1, -1, -1, -1, -1, -3, -1, -1, -1, -1, -1, 0, -1, -1, -1, -1, -1, -2, -1, 1, -1, -1, -1, -2, -1
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - Boole[Mod[n, k] == 0] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 85}]
  • PARI
    A300547(n) = { if(!n,return(1)); my(p=1); fordiv(n,d, p *= (1 - 'x^d)); polcoeff(p,n); }; \\ Antti Karttunen, Sep 25 2018

A331979 Number of compositions (ordered partitions) of n into distinct nontrivial divisors of n.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 894, 0, 0, 0, 24, 0, 6, 0, 0, 0, 0, 0, 894, 0, 0, 0, 0, 0, 30, 0, 120, 0, 0, 0, 19518, 0, 0, 0, 0, 0, 126, 0, 0, 0, 0, 0, 18558, 0, 0, 0, 0, 0, 6, 0, 864
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2020

Keywords

Examples

			a(12) = 6 because we have [6, 4, 2], [6, 2, 4], [4, 6, 2], [4, 2, 6], [2, 6, 4] and [2, 4, 6].
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1, n})[]]):
          b:= proc(m, i, p) option remember; `if`(m=0, p!, `if`(i<1, 0,
                 b(m, i-1, p)+`if`(l[i]>m, 0, b(m-l[i], i-1, p+1))))
              end; forget(b):
          b(n, nops(l), 0)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Feb 03 2020
  • Mathematica
    a[n_] := If[n == 0, 1, Module[{b, l = Divisors[n] ~Complement~ {1, n}}, b[m_, i_, p_] := b[m, i, p] = If[m == 0, p!, If[i < 1, 0, b[m, i-1, p] + If[l[[i]] > m, 0, b[m - l[[i]], i-1, p+1]]]]; b[n, Length[l], 0]]];
    a /@ Range[0, 100] (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)
Showing 1-4 of 4 results.