A293814 Number of partitions of n into distinct nontrivial divisors of n.
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 18, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 15, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 0, 13, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 10, 0, 0, 0, 1
Offset: 0
Keywords
Examples
a(24) = 2 because 24 has 8 divisors {1, 2, 3, 4, 6, 8, 12, 24} among which 6 are nontrivial divisors {2, 3, 4, 6, 8, 12} therefore we have [12, 8, 4] and [12, 6, 4, 2].
Links
Programs
-
Maple
with(numtheory): a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1, n})[]]): b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1)))) end; forget(b): b(n, nops(l)) end: seq(a(n), n=0..100); # Alois P. Heinz, Oct 16 2017
-
Mathematica
Table[d = Divisors[n]; Coefficient[Series[Product[1 + Boole[d[[k]] != 1 && d[[k]] != n] x^d[[k]], {k, Length[d]}], {x, 0, n}], x, n], {n, 0, 100}]
-
PARI
A293814(n) = { if(!n,return(1)); my(p=1); fordiv(n,d,if(d>1&&d
Antti Karttunen, Dec 22 2017 -
Scheme
;; Implements a simple backtracking algorithm: (define (A293814 n) (if (<= n 1) (- 1 n) (let ((s (list 0))) (let fork ((r n) (divs (cdr (proper-divisors n)))) (cond ((zero? r) (set-car! s (+ 1 (car s)))) ((or (null? divs) (> (car divs) r)) #f) (else (begin (fork (- r (car divs)) (cdr divs)) (fork r (cdr divs)))))) (car s)))) (define (proper-divisors n) (reverse (cdr (reverse (divisors n))))) (define (divisors n) (let loop ((k n) (divs (list))) (cond ((zero? k) divs) ((zero? (modulo n k)) (loop (- k 1) (cons k divs))) (else (loop (- k 1) divs))))) ;; Antti Karttunen, Dec 22 2017
Formula
a(n) = [x^n] Product_{d|n, 1 < d < n} (1 + x^d).
a(n) = A211111(n) - 1 for n > 1.
Comments