cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A294133 Sorted list of prime factors of numbers of the form 5^(2^m) + 2^(2^m) with m >= 0.

Original entry on oeis.org

7, 17, 29, 97, 193, 257, 641, 12289, 22993, 65537, 102593, 115201, 152833, 211457, 993793, 5189633, 26411009, 79280897, 93847553, 167772161, 230686721, 1364951041, 1573071713, 3221225473, 5488091137, 186678460417, 206158430209, 274568286337
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 23 2017

Keywords

Comments

Primes p other than 3 such that the multiplicative order of 5/2 (mod p) is a power of 2.

Crossrefs

Programs

  • PARI
    print1(7, ", "); forprime(p=17, 274568286337, z=znorder(Mod(5/2, p)); if(2^ispower(z)==z, print1(p, ", ")));

A294134 Sorted list of prime factors of numbers of the form 7^(2^m) + 2^(2^m) with m >= 0.

Original entry on oeis.org

3, 17, 53, 97, 257, 449, 2417, 7681, 8513, 65537, 89633, 114689, 339121, 876097, 1321729, 1454081, 2572289, 4638721, 5463041, 7340033, 27688961, 47047681, 62177153, 93847553, 113418241, 374734849, 3731619841, 13037142017, 13555990529, 13951408129, 142807662593
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 23 2017

Keywords

Comments

Primes p other than 5 such that the multiplicative order of 7/2 (mod p) is a power of 2.

Crossrefs

Programs

  • PARI
    print1(3, ", "); forprime(p=17, 142807662593, z=znorder(Mod(7/2, p)); if(2^ispower(z)==z, print1(p, ", ")));

A294135 Sorted list of prime factors of numbers of the form 9^(2^m) + 2^(2^m) with m >= 0.

Original entry on oeis.org

5, 11, 17, 257, 449, 1601, 6577, 20353, 25601, 40961, 65537, 95873, 163841, 176129, 1179649, 8452097, 13631489, 26419201, 32310529, 38031361, 56867009, 59637761, 144310273, 480865793, 697434113, 1572864001, 2013265921, 7547650049, 62872289281, 483049603073
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 23 2017

Keywords

Comments

Primes p other than 7 such that the multiplicative order of 9/2 (mod p) is a power of 2.

Crossrefs

Programs

  • PARI
    print1(5, ", "11, ", "); forprime(p=17, 483049603073, z=znorder(Mod(9/2, p)); if(2^ispower(z)==z, print1(p, ", ")));

A294136 Sorted list of prime factors of numbers of the form 11^(2^m) + 2^(2^m) with m >= 0.

Original entry on oeis.org

5, 13, 17, 241, 257, 12289, 14657, 26113, 52321, 65537, 98561, 235009, 697409, 23068673, 558205057, 755184641, 3433910273, 5557248001, 17343447041, 65886344833, 442483095553, 689863229441, 8142833614849, 10737426890753, 11598906596353, 57966757675009
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 23 2017

Keywords

Comments

Primes p other than 3 such that the multiplicative order of 11/2 (mod p) is a power of 2.

Crossrefs

Programs

  • PARI
    print1(5, ", "13, ", "); forprime(p=17, 57966757675009, z=znorder(Mod(11/2, p)); if(2^ispower(z)==z, print1(p, ", ")));

A050244 Numbers k such that 2^k + 3^k is a semiprime.

Original entry on oeis.org

3, 6, 7, 8, 10, 11, 12, 14, 16, 22, 32, 34, 38, 82, 83, 106, 128, 149, 218, 223, 334, 412, 436, 599, 647, 916, 1373, 4414, 7246, 8423, 10118, 10942, 15898, 42422, 65986
Offset: 1

Views

Author

Hugo Pfoertner, May 08 2003

Keywords

Comments

Empirically, the smaller factor of 2^a(n) + 3^a(n) is a term of A294132 for all known terms. a(34) > 22000. - Hugo Pfoertner, Jul 29 2019
Terms for n >= 34 are probable semiprimes. - Tyler Busby, Feb 18 2023
Empirically, this sequence is a subsequence of A093641. No more terms of A093641 less than 10^5 are in this sequence. - Tyler Busby, Feb 20 2023

Examples

			a(1)=3 because 2^3 + 3^3 = 5 * 7.
a(2)=6 because 2^6 + 3^6 = 13 * 61.
a(3)=7 because 2^7 + 3^7 = 5 * 463.
a(4)=8 because 2^8 + 3^8 = 17 * 401.
a(5)=10 because 2^10 + 3^10 = 13 * 4621.
a(6)=11 because 2^11 + 3^11 = 5 * 35839.
a(7)=12 because 2^12 + 3^12 = 97 * 5521.
a(8)=14 because 2^14 + 3^14 = 13 * 369181.
a(9)=16 because 2^16 + 3^16 = 3041 * 14177.
a(10)=22 because 2^22 + 3^22 = 13 * 2414250301.
a(11)=32 because 2^32 + 3^32 = 1153 * 1607133116929.
a(12)=34 because 2^34 + 3^34 = 13 * 1282861452271981.
a(13)=38 because 2^38 + 3^38 = 13 * 103911691734684541.
a(14)=82 because 2^82 + 3^82 = 13 * 102329189594547549657540565413396038701.
a(15)=83 because 2^83 + 3^83 = 5 * 798167678837469920188160718521149336927.
a(16)=106 because 2^106 + 3^106 = 13 * 28900785585664327723593061693364968422740414514061.
a(17)=128 because 2^128 + 3^128 = 257 * 45876204582640401445607833244277975113391731388650867226881.
a(18)=149 because 2^149 + 3^149 = 5 * 24665899002341798194980052306171212216360861465143461865961807325057879.
		

Crossrefs

Extensions

Corrected and extended by Hugo Pfoertner, May 12 2003
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Dec 30 2007
a(28)-a(32) from Sean A. Irvine, Nov 05 2009
a(33) from Hugo Pfoertner, Jul 29 2019
a(34)-a(35) from Tyler Busby, Jan 14 2023

A094499 Smallest prime factor of 2^(2^n)+3^(2^n), i.e., exponents are powers of 2.

Original entry on oeis.org

13, 97, 17, 3041, 1153, 769, 257, 72222721, 4043777, 2330249132033, 625483777, 286721, 14496395542529, 2752513, 65537, 319291393, 54498164737
Offset: 1

Views

Author

Labos Elemer, Jun 02 2004

Keywords

Comments

Factors are of the form k*2^(n+1)+1.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = 1, m = 2^(n + 1)}, While[ Mod[ PowerMod[2, 2^n, k*m + 1] + PowerMod[3, 2^n, k*m + 1], k*m + 1] != 0, k++ ]; k*m + 1]; Table[ f[n], {n, 9}] (* Robert G. Wilson v, Jun 03 2004 *)

Extensions

Edited and extended by Robert G. Wilson v, Jun 03 2004
Showing 1-6 of 6 results.