cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244641 Decimal expansion of the sum of the reciprocals of the pentagonal numbers (A000326).

Original entry on oeis.org

1, 4, 8, 2, 0, 3, 7, 5, 0, 1, 7, 7, 0, 1, 1, 1, 2, 2, 3, 5, 9, 1, 6, 5, 7, 4, 5, 3, 1, 2, 5, 4, 2, 1, 3, 8, 1, 6, 5, 8, 4, 0, 5, 4, 2, 5, 3, 7, 5, 5, 0, 7, 7, 7, 9, 6, 3, 4, 1, 9, 8, 0, 6, 5, 5, 2, 4, 3, 5, 9, 6, 9, 8, 5, 2, 9, 4, 7, 3, 0, 1, 6, 9, 3, 6, 7, 2, 2, 2, 7, 6, 2, 2, 9, 1, 3, 6, 0, 9, 7, 5, 0, 7, 6, 8
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Examples

			1.482037501770111223591657453125421381658405425375507779634198065524359698529473...
		

Crossrefs

Decimal expansion of the sum of the reciprocals of the m-gonal numbers: A000038 (m=3), A013661 (m=4), this sequence (m=5), A016627 (m=6), A244639 (m=7), A244645 (m=8), A244646 (m=9), A244647 (m=10), A244648 (m=11), A244649 (m=12), A275792 (m=14).

Programs

  • Magma
    SetDefaultRealField(RealField(139)); R:= RealField(); 3*Log(3)-Pi(R)*Sqrt(3)/3; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    RealDigits[Sum[2/(3*n^2-n), {n,1,Infinity}], 10, 111][[1]]
    RealDigits[3*Log[3] - Pi*Sqrt[3]/3, 10, 140][[1]] (* G. C. Greubel, Mar 24 2024 *)
  • SageMath
    numerical_approx(3*log(3)-pi*sqrt(3)/3, digits=139) # G. C. Greubel, Mar 24 2024

Formula

Sum_{n>=1} 2/(3*n^2 - n).
Equals 3*log(3) - Pi*sqrt(3)/3 = A016650 - A093602. - Michel Marcus, Jul 03 2014
Equals 2*A294514. - Hugo Pfoertner, Apr 24 2025

A294513 Denominators of the partial sums of the reciprocals of twice the pentagonal numbers.

Original entry on oeis.org

2, 5, 120, 1320, 9240, 52360, 52360, 602140, 70450380, 2043061020, 16344488160, 3268897632, 62109055008, 2546471255328, 1157486934240, 54401885909280, 272009429546400, 4805499921986400, 4805499921986400, 283524495397197600, 418536159872053600
Offset: 0

Views

Author

Wolfdieter Lang, Nov 02 2017

Keywords

Comments

The corresponding numerators are given by A250328(n+1), n >= 0.
Twice the positive pentagonal numbers are A049450(k+1) = (k+1)*(3*k+2), k >= 0.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [3,2].
The limit of the series is V(3,2) = lim_{n -> oo} V(3,2;n) = (3/2)*log(3) - Pi/(2*sqrt(3)) = 0.74101875088505561179... given in A294514.

Examples

			The rationals V(3,2;n), n >= 0, begin: 1/2, 3/5, 77/120, 877/1320, 6271/9240, 36049/52360, 36423/52360, 422137/602140, 49691099/70450380, 1448086909/2043061020, ...
V(3,2;10^4) = 0.7409854223(Maple, 10 digits) to be compared with 0.7410187513 from V(3,2) given in A294514.
Conjecture tests: a(0) = 2 =  A250327(1)/1, 2* a(1) = 5 = 2*A250327(2)/2 = A250327(2), a(2) = 120 = 2*A250327(2)/3 = 2*180/3, ...
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193 (with v_m(r) = ((m-r)/m)*V(m,r)).

Crossrefs

Cf. A049450, A250327(n+1), A250328(n+1), A294512.

Programs

  • Mathematica
    Denominator@ Accumulate@ Array[1/(2 PolygonalNumber[5, #]) &, 21] (* Michael De Vlieger, Nov 02 2017 *)

Formula

a(n) = denominator(V(3,2;n)) with V(3,2;n) = Sum_{k=0..n} 1/((k + 1)*(3*k + 2)) = Sum_{k=0..n} 1/A049450(k+1) = Sum_{k=0..n} (3/(3*k + 2) - 1/(k+1)).
a(n) = 2*A250327(n+1)/(n+1) [conjecture].

A384683 Decimal expansion of Sum_{i >= 1} 1/(3*i-1) - 1/(3*i).

Original entry on oeis.org

2, 4, 7, 0, 0, 6, 2, 5, 0, 2, 9, 5, 0, 1, 8, 5, 3, 7, 2, 6, 5, 2, 7, 6, 2, 4, 2, 1, 8, 7, 5, 7, 0, 2, 3, 0, 2, 7, 6, 4, 0, 0, 9, 0, 4, 2, 2, 9, 2, 5, 1, 2, 9, 6, 6, 0, 5, 6, 9, 9, 6, 7, 7, 5, 8, 7, 3, 9, 3, 2, 8, 3, 0, 8, 8, 2, 4, 5, 5, 0, 2, 8, 2, 2, 7, 8, 7, 0, 4, 6, 0, 3, 8, 1, 8, 9, 3, 4, 9, 5, 8, 4, 6, 1, 4, 6, 1, 2, 1, 1, 9, 4, 6, 7, 8, 4
Offset: 0

Views

Author

Jason Bard, Jun 06 2025

Keywords

Comments

Generalization of infinite sum generating A002162 (natural logarithm of 2). That sum is Sum_{i >= 1} 1/(k*i-1) - 1/(k*i), where k = 2. Here, we set k = 3.

Examples

			0.24700625029501853726527624218757023027640090422925...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/2 * Log[3] - (Sqrt[3]/18) * Pi, 10, 1000][[1]]
  • PARI
    log(3)/2 - Pi/(6*sqrt(3)) \\ Amiram Eldar, Jun 07 2025

Formula

Equals (1/2) * log(3) - sqrt(3) * Pi / 18.
Equals Sum_{i>=1} 1/A152743(i).
Equals A294514/3. - Hugo Pfoertner, Jun 07 2025
Showing 1-3 of 3 results.