cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244649 Decimal expansion of the sum of the reciprocals of the Dodecagonal numbers (A051624).

Original entry on oeis.org

1, 1, 7, 7, 9, 5, 6, 0, 5, 7, 9, 2, 2, 6, 6, 3, 8, 5, 8, 7, 3, 5, 1, 7, 3, 9, 6, 8, 0, 9, 1, 8, 8, 7, 4, 1, 8, 4, 4, 5, 8, 5, 7, 2, 3, 4, 5, 6, 6, 6, 7, 9, 8, 0, 2, 8, 4, 2, 5, 2, 2, 8, 5, 7, 3, 2, 6, 6, 8, 9, 2, 5, 6, 8, 2, 8, 4, 8, 8, 7, 4, 5, 4, 0, 2, 4, 0, 7, 6, 9, 0, 2, 5, 6, 9, 5, 5, 9, 0, 3, 2, 2, 4, 4, 4
Offset: 1

Views

Author

Robert G. Wilson v, Jul 03 2014

Keywords

Comments

From Wolfdieter Lang, Nov 09 2017: (Start)
In the Downey et al. link this is the instance k = 5 of the formula given there for S_{2*k+2}. A simpler formula is given in the Koecher reference as (5/4)*v_5(1) on p. 192. See the Kotesovec formula given below.
The partial sums are given in A294520/A294521. (End)

Examples

			1.1779560579226638587351739680918874184458572345666798028425228573...
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193.

Crossrefs

Programs

  • Mathematica
    RealDigits[ Sum[1/(5n^2 - 4n), {n, 1 , Infinity}], 10, 111][[1]]

Formula

Equals Sum_{n>=1} 1/(5n^2 - 4n).
Equals Pi/8*sqrt(1+2/sqrt(5)) + (5*log(5) + sqrt(5)*log((3+sqrt(5))/2))/16. - Vaclav Kotesovec, Jul 04 2014
This is the value given in the Koecher reference (see a comment above), and rewritten with the golden section phi = (1 + sqrt(5))/2 this becomes
((5/2)*log(5) + (2*phi - 1)*(log(phi) + (Pi/5)*sqrt(3 + 4*phi)))/8. - Wolfdieter Lang, Nov 09 2017

A294520 Numerators of the partial sums of the reciprocals of the dodecagonal numbers (k + 1)*(5*k + 1) = A051624(k+1), for k >= 0.

Original entry on oeis.org

1, 13, 49, 795, 84179, 366829, 11417459, 103067441, 4235695001, 97604192047, 1661825059679, 1663957022369, 101611584435869, 101706166053389, 7226964017429851, 17176158550059533, 154681745346189277, 6654999228519884521, 6658297729691103841, 21316057915886595965, 2153790894613123442641
Offset: 0

Views

Author

Wolfdieter Lang, Nov 15 2017

Keywords

Comments

The corresponding denominators are given in A294521.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,1].
The limit of the series is V(5,1) = lim_{n -> oo} V(5,1;n) = ((5/2)*log(5) + (2*phi - 1)*(log(phi) + (Pi/5)*sqrt(3 + 4*phi)))/8, with the golden section phi:= (1 + sqrt(5))/2. The value is 1.17795605792266... given in A244649.

Examples

			The rationals V(5,1;n), n >= 0, begin: 1, 13/12, 49/44, 795/704, 84179/73920, 366829/320320, 11417459/9929920, 103067441/89369280, 4235695001/3664140480, 97604192047/84275231040, 1661825059679/1432678927680, ...
V(5,1;10^6) = 1.177956058 (Maple, 10 digits) to be compared with 1.177956058 obtained from V(5,1) given in A244649.
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.

Crossrefs

Programs

  • Magma
    [Numerator((&+[1/((k+1)*(5*k+1)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018
  • Mathematica
    Table[Numerator[Sum[1/((k + 1)*(5*k + 1)), {k, 0, n}]], {n, 0, 30}] (* G. C. Greubel, Aug 29 2018 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 1)))); \\ Michel Marcus, Nov 15 2017
    

Formula

a(n) = numerator(V(5,1;n)) with V(5,1;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 1)) = Sum_{k=0..n} 1/A051624(k+1) = (1/4)*Sum_{k=0..n} (1/(k + 1/5) - 1/(k+1)) = (-Psi(1/5) + Psi(n+6/5) - (gamma + Psi(n+2)))/4, with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.

A294826 Numerators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0.

Original entry on oeis.org

1, 4, 151, 1315, 36698, 667109, 10749479, 399851303, 401511863, 18933826729, 246810236317, 4700047812703, 145981746528913, 9796912235587651, 9810925971351679, 9823210739716249, 403196782523223569, 11704197956499986461, 269433333504358946963, 5231145593209503407215, 747842028258712790473
Offset: 0

Views

Author

Wolfdieter Lang, Nov 16 2017

Keywords

Comments

The corresponding denominators are given in A294827.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,2].
The limit of the series is V(5,2) = lim_{n -> oo} V(5,2;n) = ((5/2)*log(5) - (2*phi-1)*(log(phi) - (Pi/5)*sqrt(7-4*phi)))/6, with the golden section phi:= (1 + sqrt(5))/2. The value is 0.661389626561... given by (1/2)*A244639.
In the Koecher reference v_5(2) = (3/5)*V(5,2) = 0.39683377593671665701 ...is given as (1/4)*log(5) - (1/(2*sqrt(5)))*log((1 + sqrt(5))/2) + (Pi/10)*sqrt((5 - 2*sqrt(5))/5).

Examples

			The rationals V(5,2;n), n >= 0, begin: 1/2, 4/7, 151/252, 1315/2142, 36698/58905, 667109/1060290, 10749479/16964640, 399851303/627691680, 401511863/627691680, 18933826729/29501508960, 246810236317/383519616480, ...
V(5,2;10^6) = 0.6613894266 (Maple, 10 digits) to be compared with 0.6613896266 giving the 10 digit value of V(5,2) from (1/2)*A244649.
		

References

  • Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.

Crossrefs

Programs

  • Magma
    [Numerator((&+[1/((k+1)*(5*k+2)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018
  • Mathematica
    Table[Numerator[Sum[1/((k+1)*(5*k+2)), {k,0,n}]], {n,0,25}] (* G. C. Greubel, Aug 29 2018 *)
    Accumulate[1/(2*PolygonalNumber[7,Range[30]])]//Numerator (* Harvey P. Dale, Aug 31 2023 *)
  • PARI
    a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 2)))); \\ Michel Marcus, Nov 17 2017
    

Formula

a(n) = numerator(V(5,2;n)) with V(5,2;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 2)) = Sum_{k=0..n} 1/A135706(k+1) = (1/3)*Sum_{k=0..n} (1/(k + 2/5) - 1/(k+1)) = (-Psi(2/5) + Psi(n+7/5) - (gamma + Psi(n+2)))/3 with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.
Showing 1-3 of 3 results.