A006935
Even pseudoprimes (or primes) to base 2: even n that divide 2^n - 2.
Original entry on oeis.org
2, 161038, 215326, 2568226, 3020626, 7866046, 9115426, 49699666, 143742226, 161292286, 196116194, 209665666, 213388066, 293974066, 336408382, 377994926, 410857426, 665387746, 667363522, 672655726, 760569694, 1066079026, 1105826338, 1423998226, 1451887438, 1610063326, 2001038066, 2138882626, 2952654706, 3220041826
Offset: 1
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 23.
- J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factorizations of b^n+/-1 b=2, 3, 5, 6, 7, 10, 11, 12 up to high powers, Contemporary Math. v.22.
- R. K. Guy, Unsolved Problems in Number Theory, A12.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 91.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Max Alekseyev, Table of n, a(n) for n = 1..1319 (contains all terms below 2*10^15; first 156 terms from R. G. E. Pinch)
- N. G. W. H. Beeger, On even numbers m dividing 2^m-2, Amer. Math. Monthly, Vol. 58, No. 8 (1951), pp. 553-555.
- D. H. Lehmer, On the Converse of Fermat's Theorem II, Amer. Math. Monthly, Vol. 56, No. 5 (1949), pp. 300-309.
- A. Rotkiewicz and K. Ziemak, On Even Pseudoprimes, The Fibonacci Quarterly, Vol. 33, No. 2 (1995), pp. 123-125.
- Eric Weisstein's World of Mathematics, Fermat Pseudoprime.
- Index entries for sequences related to pseudoprimes
A158358
Pseudoprimes to base 2 that are not squarefree, including the even pseudoprimes.
Original entry on oeis.org
1194649, 12327121, 3914864773, 5654273717, 6523978189, 22178658685, 26092328809, 31310555641, 41747009305, 53053167441, 58706246509, 74795779241, 85667085141, 129816911251, 237865367741, 259621495381, 333967711897, 346157884801, 467032496113, 575310702877, 601401837037, 605767053061
Offset: 1
a(6) = 22178658685 = 5 * 47 * 79 * 1093^2 is a pseudoprime that is not squarefree.
- P. Ribenboim, The Little Book of Big Primes. Springer-Verlag, NY, 1991, pp. 77, 83, 167.
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10010 (The even terms inserted by Jianing Song)
- Jan Feitsma, W search: non-squarefree pseudoprimes
- R. G. E. Pinch, The pseudoprimes up to 10^13, Lecture Notes in Computer Science, 1838 (2000), 459-473. - _Felix Fröhlich_, Apr 16 2014
- C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., The pseudoprimes to 25*10^9, Mathematics of Computation 35 (1980), pp. 1003-1026.
- Index entries for sequences related to pseudoprimes
-
list(lim)=vecsort(concat(concat(apply(p->select(n->Mod(2, n)^(n-1)==1, p^2*vector(lim\p^2\2, i, 2*i-1)), [1093, 3511])), select(n->Mod(2, n)^n==2, 2*3511^2*vector(lim\3511^2\2, i, i))), , 8) \\ valid up to 4.489 * 10^31, Charles R Greathouse IV, Sep 12 2012, changed to include the even terms by Jianing Song, Feb 07 2019
A247831
Pseudoprimes to base 2 divisible by 3511^2, including the even pseudoprimes.
Original entry on oeis.org
12327121, 129816911251, 259621495381, 346157884801, 605767053061, 6317168754781, 6922923480721, 12634325182441, 18518799663001, 21634109682121, 24273469559431, 57114029344321, 65681131896901, 102718706568661, 135083316211741, 135818875521811, 153342494379361
Offset: 1
- Jianing Song, Table of n, a(n) for n = 1..1470
- R. G. E. Pinch, The pseudoprimes up to 10^13, Lecture Notes in Computer Science, 1838 (2000), 459-473.
- C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., The pseudoprimes to 25*10^9, Mathematics of Computation 35 (1980), pp. 1003-1026.
-
vi=readvec("b158358.txt")
for(n=1, #vi, if(Mod(vi[n], 3511^2)==0, print1(vi[n], ", ")))
-
list(N)=select(k->Mod(2, k)^k==2, 3511^2*vector(N\3511^2\2, i, i)) \\ Jianing Song, Feb 07 2019
A306450
Non-coprime pseudoprimes to base 3 (A306451) that are not squarefree.
Original entry on oeis.org
726, 1053426, 6498426, 7912311, 8141001, 190381521, 202730781, 283975626, 524245326, 767159481, 1095790641, 1620456321, 1904467521, 2287621281, 2700546486, 3462782961, 4120800321, 4928482581, 5816852481, 5974336401, 9313587921, 18723332001, 21215225361, 22073079666, 29882080866, 30132305841
Offset: 1
726 is a term because 726 divides 3^726 - 3 and 726 = 2 * 3 * 11^2.
-
forstep(n=3, 10^9, 3, if(Mod(3, n)^n==3 && !issquarefree(n), print1(n, ", ")))
A353221
Squarefree base-2 Fermat pseudoprimes divisible by a Wieferich prime.
Original entry on oeis.org
3581761, 5173169, 5968873, 23872213, 36974341, 53711113, 107023281, 427294141, 490950461, 526359289, 546649741, 550230409, 753532781, 803264281, 836683849, 1115578101, 1168492417, 1193557093, 1540454761, 1632785701, 2129304997, 2295209281, 2677147201
Offset: 1
3581761 = 29 * 113 * 1093, so it is a base-2 pseudoprime divisible by the Wieferich prime 1093 and is squarefree.
-
/* The following program is valid up to the current search bound for Wieferich primes, about 10^19 as of May 03 2022 (cf. PrimeGrid); the program may miss terms above that bound if there is another Wieferich prime */
forcomposite(c=1, , if(Mod(2, c)^(c-1)==1, if(Mod(c, 1093)==0 || Mod(c, 3511)==0, if(issquarefree(c), print1(c, ", ")))))
Showing 1-5 of 5 results.
Comments