cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 34 results. Next

A297469 Solution (bb(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

2, 7, 11, 17, 22, 27, 31, 37, 41, 47, 51, 57, 62, 67, 71, 77, 82, 87, 91, 97, 102, 107, 111, 117, 121, 127, 131, 137, 142, 147, 151, 157, 161, 167, 171, 177, 182, 187, 191, 197, 201, 207, 211, 217, 222, 227, 231, 237, 242, 247, 251, 257, 262, 267, 271, 277
Offset: 0

Views

Author

Clark Kimberling, May 04 2018

Keywords

Comments

Define sequences aa(n), bb(n), cc(n) recursively, starting with aa(0) = 1, bb(0) = 2, cc(0) = 3:
aa(n) = least new;
bb(n) = aa(n) + cc(n-1);
cc(n) = least new;
where "least new k" means the least positive integer not yet placed.
***
The sequences aa,bb,cc partition the positive integers. It appears that cc = A047218 and that for every n >= 0,
(1) 5*n - 1 - 2*aa(n) is in {0,1,2},
(2) (aa(n) mod 5) is in {1,2,4},
(3) 5*n - 3 - bb(n) is in {0,1} for every n >= 0;
(4) (bb(n) mod 5) is in {1,2}.
From N. J. A. Sloane, Nov 05 2019: (Start)
Conjecture: For t >= 0, bb(2t) = 10t + 1 (+1 if binary expansion of t ends in an odd number of 0's), bb(2t+1) = 10t + 7.
The first part may also be written as bb(2t) = 10t + 1 + A328789(t-1).
(End)

Examples

			n:  0 1 2 3 4 5 6 7 8 9 10
aa: 1 4 6 9 12 14 16 19 21 24 26
bb: 2 7 11 17 22 27 31 37 41 47 51
cc: 3 5 8 10 13 15 18 20 23 25 28
		

Crossrefs

Cf. A299634, A298468 (aa), A047218 (cc), A328789.

Programs

  • Mathematica
    z = 500;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3};
    Do[AppendTo[a, mex[Flatten[{a, b, c}], Last[a]]];
      AppendTo[b, Last[a] + Last[c]];
      AppendTo[c, mex[Flatten[{a, b, c}], Last[a]]], {z}];
    Take[a, 100] (* A298468 *)
    Take[b, 100] (* A297469 *)
    Take[c, 100] (* A047218 *)
    (* Peter J. C. Moses, Apr 23 2018 *)

Extensions

Changed a,b,c to aa,bb,cc to avoid confusion caused by conflict with standard OEIS terminology. - N. J. A. Sloane, Nov 03 2019

A298868 Solution (a(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

1, 4, 6, 8, 11, 14, 15, 17, 19, 21, 24, 26, 27, 29, 32, 33, 34, 37, 41, 42, 45, 46, 48, 52, 53, 54, 57, 58, 59, 61, 64, 67, 70, 72, 73, 74, 77, 79, 82, 83, 87, 90, 92, 93, 94, 96, 98, 100, 101, 104, 105, 107, 111, 113, 115, 118, 119, 120, 122, 125, 126, 127
Offset: 0

Views

Author

Clark Kimberling, Apr 17 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new k >= a(n) + n;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers. Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67));
x = 2.07816258732933084676..., and a(n)/n -> x, b(n)/n -> x+1, and c(n)/n -> 2x+1.

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    6    8   11   14   15   17   19   21
b:   2    5    7   10   12   16   20   22   25   28
c:   3    9   13   18   23   30   35   39   44   49
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {}; AppendTo[c, Last[a] + Last[b]]; n = 0;
    Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c}], a[[n]] + n]],
       AppendTo[c, Last[a] + Last[b]]}, {z}];
    Take[a, 100] (* A298868 *)
    Take[b, 100] (* A298869 *)
    Take[c, 100] (* A298870 *)
    (* Peter J. C. Moses, Apr 08 2018 *)

A298468 Solution (aa(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

1, 4, 6, 9, 12, 14, 16, 19, 21, 24, 26, 29, 32, 34, 36, 39, 42, 44, 46, 49, 52, 54, 56, 59, 61, 64, 66, 69, 72, 74, 76, 79, 81, 84, 86, 89, 92, 94, 96, 99, 101, 104, 106, 109, 112, 114, 116, 119, 122, 124, 126, 129, 132, 134, 136, 139, 141, 144, 146, 149
Offset: 0

Views

Author

Clark Kimberling, May 04 2018

Keywords

Comments

Define sequences aa(n), bb(n), cc(n) recursively, starting with aa(0) = 1, bb(0) = 2, cc(0) = 3:
aa(n) = least new;
bb(n) = aa(n) + cc(n-1);
cc(n) = least new;
where "least new k" means the least positive integer not yet placed.
***
The sequences aa,bb,cc partition the positive integers. It appears that cc = A047218 and that for every n >=0,
(1) 5*n - 1 - 2*aa(n) is in {0,1,2},
(2) (aa(n) mod 5) is in {1,2,4},
(3) 5*n - 3 - bb(n) is in {0,1} for every n >= 0;
(4) (bb(n) mod 5) is in {1,2}.
From N. J. A. Sloane, Nov 05 2019: (Start)
Conjecture: For t >= 1, aa(2t) = 5t+1(+1 if binary expansion of t ends in an odd number of 0's), and for t >= 0, aa(2t+1) = 5t+4.
The first part may also be written as aa(2t) = 5t+1+A328789(t-1).
(End)

Examples

			n:  0 1 2 3 4 5 6 7 8 9 10
aa: 1 4 6 9 12 14 16 19 21 24 26
bb: 2 7 11 17 22 27 31 37 41 47 51
cc: 3 5 8 10 13 15 18 20 23 25 28
		

Crossrefs

Cf. A299634, A297469 (bb), A047218 (cc), A328789.

Programs

  • Mathematica
    z = 500;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3};
    Do[AppendTo[a, mex[Flatten[{a, b, c}], Last[a]]];
      AppendTo[b, Last[a] + Last[c]];
      AppendTo[c, mex[Flatten[{a, b, c}], Last[a]]], {z}];
    Take[a, 100] (* A298468 *)
    Take[b, 100] (* A297469 *)
    Take[c, 100] (* A047218 *)
    (* Peter J. C. Moses, Apr 23 2018 *)

Extensions

Changed a,b,c to aa,bb,cc to avoid confusion caused by conflict with standard OEIS terminology. - N. J. A. Sloane, Nov 03 2019

A298871 Solution (a(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

1, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new k >= a(n) + b(n-1);
c(n) = a(n) + 2 b(n);
where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers.

Examples

			n:   0    1    2    3    4    5    6    7    8   9
a:   1    4    5    7    8    9   10   12   13   14
b:   2    6   11   18   26   35   45   57   70   84
c:   3   16   27   43   60   30   79  100  126  153
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3};
    Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + Last[b]]],
       AppendTo[c, Last[a] + 2 Last[b]]}, {z}];
    Take[a, 100] (* A298871 *)
    Take[b, 100] (* A298872 *)
    Take[c, 100] (* A298873 *)

A298872 Solution (b(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

2, 6, 11, 18, 26, 35, 45, 57, 70, 84, 99, 116, 135, 155, 176, 198, 221, 245, 270, 298, 327, 357, 388, 420, 453, 487, 523, 560, 598, 637, 677, 718, 760, 804, 850, 897, 945, 994, 1044, 1095, 1147, 1200, 1254, 1309, 1365, 1423, 1482, 1543, 1605, 1668, 1732
Offset: 0

Views

Author

Clark Kimberling, Apr 18 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new k >= a(n) + b(n-1);
c(n) = a(n) + 2 b(n);
where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers.

Examples

			n:   0    1    2    3    4    5    6    7    8   9
a:   1    4    5    7    8    9   10   12   13   14
b:   2    6   11   18   26   35   45   57   70   84
c:   3   16   27   43   60   30   79  100  126  153
		

Crossrefs

Programs

  • Mathematica
    z = 400;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3};
    Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + Last[b]]],
       AppendTo[c, Last[a] + 2 Last[b]]}, {z}];
    Take[a, 100]  (* A298871 *)
    Take[b, 100]  (* A298872 *)
    Take[c, 100]  (* A298873 *)

A299405 Solution (a(n)) of the system of 5 complementary equations in Comments.

Original entry on oeis.org

1, 5, 9, 14, 18, 22, 27, 31, 35, 39, 43, 48, 52, 56, 60, 65, 69, 73, 77, 82, 86, 90, 95, 99, 103, 107, 111, 116, 120, 124, 128, 133, 137, 141, 145, 150, 154, 158, 163, 167, 171, 175, 179, 184, 188, 192, 196, 201, 205, 209, 213, 218, 222, 226, 231, 235, 239
Offset: 0

Views

Author

Clark Kimberling, Apr 22 2018

Keywords

Comments

Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3;:
a(n) = least new;
b(n) = least new;
c(n) = least new;
d(n) = least new;
e(n) = a(n) + b(n) + c(n) + d(n);
where "least new k" means the least positive integer not yet placed.
***
Conjecture: for all n >= 0,
0 <= 17n - 11 - 4 a(n) <= 4
0 <= 17n - 7 - 4 b(n) <= 4
0 <= 17n - 3 - 4 c(n) <= 3
0 <= 17n + 1 - 4 d(n) <= 3
0 <= 17n - 5 - e(n) <= 3
***
The sequences a,b,c,d,e partition the positive integers. The sequence e can be called the "anti-tetranacci sequence"; see A075326 (anti-Fibonacci numbers) and A265389 (anti-tribonacci numbers).

Examples

			n:   0  1   2    3   4   5   6   7   8   9
a:   1  5   9   14  18  22  27  31  35  39
b:   2  6   11  15  19  23  28  32  36  40
c:   3  7   12  16  20  24  29  33  37  41
d:   4  8   13  17  21  25  30  34  38  42
e:  10  26  45  62  78  94 114 130 146 162
		

Crossrefs

Programs

  • Mathematica
    z = 200;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e,
    Last[a] + Last[b] + Last[c] + Last[d]];
    Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}];
    Take[a, 100]  (* A299405 *)
    Take[b, 100]  (* A299637 *)
    Take[c, 100]  (* A299638 *)
    Take[d, 100]  (* A299641 *)
    Take[e, 100]  (* A299409 *)

A299409 Solution (e(n)) of the system of 5 complementary equations in Comments.

Original entry on oeis.org

10, 26, 45, 62, 78, 94, 114, 130, 146, 162, 180, 198, 214, 230, 248, 266, 282, 298, 317, 334, 350, 366, 386, 402, 418, 434, 451, 470, 486, 502, 520, 538, 554, 570, 589, 606, 622, 638, 658, 674, 690, 706, 725, 742, 758, 774, 792, 810, 826, 842, 861, 878, 894
Offset: 0

Views

Author

Clark Kimberling, Apr 22 2018

Keywords

Comments

Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3:
a(n) = least new;
b(n) = least new;
c(n) = least new;
d(n) = least new;
e(n) = a(n) + b(n) + c(n) + d(n);
where "least new k" means the least positive integer not yet placed.
***
Conjecture: for all n >= 0,
0 <= 17n - 11 - 4 a(n) <= 4
0 <= 17n - 7 - 4 b(n) <= 4
0 <= 17n - 3 - 4 c(n) <= 3
0 <= 17n + 1 - 4 d(n) <= 3
0 <= 17n - 5 - e(n) <= 3
***
The sequences a,b,c,d,e partition the positive integers. The sequence e can be called the "anti-tetranacci sequence"; see A075326 (anti-Fibonacci numbers) and A265389 (anti-tribonacci numbers).

Examples

			n:   0  1   2    3   4   5   6   7   8   9
a:   1  5   9   14  18  22  27  31  35  39
b:   2  6   11  15  19  23  28  32  36  40
c:   3  7   12  16  20  24  29  33  37  41
d:   4  8   13  17  21  25  30  34  38  42
e:  10  26  45  62  78  94 114 130 146 162
		

Crossrefs

Programs

  • Mathematica
    (* Program 1: sequences a,b,c,d,e generated from the complementary equations *)
    z = 200;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e,
    Last[a] + Last[b] + Last[c] + Last[d]];
    Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}];
    Take[a, 100]  (* A299405 *)
    Take[b, 100]  (* A299637 *)
    Take[c, 100]  (* A299638 *)
    Take[d, 100]  (* A299641 *)
    Take[e, 100]  (* A299409 *)
    (* Program 2: sequence e generated by iterating a morphism *)
    morph = Nest[Flatten[# /. Thread[{0, 1, 2, 3} -> {{2, 3, 3, 1}, {2, 3, 2, 1}, {2, 3, 1, 1}, {2, 3, 0, 1}}]] &, {0}, 9];
    A299409 = Accumulate[Prepend[Drop[Flatten[morph /. Thread[{0, 1, 2, 3} -> {{1, 1, 2, 4}, {1, 1, 3, 3}, {1, 1, 4, 2}, {1, 1, 5, 1}}]], 1] + 15, 10]];
    Take[A299409, 100]  (* Peter J. C. Moses, May 04 2018 *)

A297838 Solution (a(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

1, 4, 5, 7, 9, 12, 15, 16, 17, 20, 21, 25, 27, 28, 29, 33, 34, 35, 36, 39, 45, 46, 47, 48, 52, 56, 57, 58, 60, 61, 62, 64, 65, 67, 74, 75, 76, 78, 79, 80, 81, 87, 88, 94, 95, 97, 100, 102, 103, 104, 105, 106, 107, 108, 110, 114, 117, 123, 124, 125, 126, 127
Offset: 0

Views

Author

Clark Kimberling, Apr 25 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = least new > = a(n) + n + 1;
c(n) = a(n) + b(n);
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Let x = be the greatest solution of 1/x + 1/(x+1) + 1/(2x+1) = 1. Then
x = 1/3 + (2/3)*sqrt(7)*cos((1/3)*arctan((3*sqrt(111))/67))
x = 2.07816258732933084676..., and a(n)/n - > x, b(n)/n -> x+1, and c(n)/n - > 2x+1.
(The same limits occur in A298868 and A297469.)

Examples

			n:   0   1   2   3   4    5   6   7   8   9  10
a:   1   4   5   7   9   12  15  16  17  20  21
b:   2   6   8  11   14  19  22  24  26  30  32
c:   3  10  13  18   23  31  37  40  43  50  53
		

Crossrefs

Programs

  • Mathematica
    z=200;
    mex[list_,start_]:=(NestWhile[#+1&,start,MemberQ[list,#]&]);
    a={1};b={2};c={3};n=0;
    Do[{n++;
      AppendTo[a,mex[Flatten[{a,b,c}],If[Length[a]==0,1,Last[a]]]],
      AppendTo[b,mex[Flatten[{a,b,c}],Last[a]+n+1]],
      AppendTo[c,Last[a]+Last[b]]},{z}];
    Take[a,100] (* A297838 *)
    Take[b,100] (* A298170 *)
    Take[c,100] (* A298418 *)
    (* Peter J. C. Moses, Apr 23 2018 *)

A298874 Solution (a(n)) of the system of 3 equations in Comments.

Original entry on oeis.org

1, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 80, 81
Offset: 0

Views

Author

Clark Kimberling, Apr 19 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2:
a(n) = least new;
b(n) = a(n) + b(n-1);
c(n) = a(n) + 2 b(n);
where "least new k" means the least positive integer not yet placed.
***
Do these sequences a,b,c partition the positive integers? They differ from the corresponding partitioning sequences A298871, A298872, and A298872. For example, A298872(56) = 2139, whereas A298875(56) = 2138.

Examples

			n:   0    1    2    3    4    5    6    7    8    9
a:   1    4    5    7    8    9   10   12   13   14
b:   2    6   11   18   26   35   45   57   70   84
c:   3   16   27   43   60   30   79  100  126  153
		

Crossrefs

Programs

  • Mathematica
    z = 200;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3};
    Do[{AppendTo[a, mex[Flatten[{a, b, c}], 1]],
       AppendTo[b, Last[a] + Last[b]],
       AppendTo[c, Last[a] + 2 Last[b]]}, {z}];
    Take[a, 100]  (* A298874 *)
    Take[b, 100]  (* A298875 *)
    Take[c, 100]  (* A298876 *)

A299637 Solution (b(n)) of the system of 5 complementary equations in Comments.

Original entry on oeis.org

2, 6, 11, 15, 19, 23, 28, 32, 36, 40, 44, 49, 53, 57, 61, 66, 70, 74, 79, 83, 87, 91, 96, 100, 104, 108, 112, 117, 121, 125, 129, 134, 138, 142, 147, 151, 155, 159, 164, 168, 172, 176, 181, 185, 189, 193, 197, 202, 206, 210, 215, 219, 223, 227, 232, 236, 240
Offset: 0

Views

Author

Clark Kimberling, Apr 22 2018

Keywords

Comments

Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3:
a(n) = least new;
b(n) = least new;
c(n) = least new;
d(n) = least new;
e(n) = a(n) + b(n) + c(n) + d(n);
where "least new k" means the least positive integer not yet placed.
***
Conjecture: for all n >= 0,
0 <= 17n - 11 - 4 a(n) <= 4
0 <= 17n - 7 - 4 b(n) <= 4
0 <= 17n - 3 - 4 c(n) <= 3
0 <= 17n + 1 - 4 d(n) <= 3
0 <= 17n - 5 - e(n) <= 3
***
The sequences a,b,c,d,e partition the positive integers. The sequence e can be called the "anti-tetranacci sequence"; see A075326 (anti-Fibonacci numbers) and A265389 (anti-tribonacci numbers).

Examples

			n:   0  1   2    3   4   5   6   7   8   9
a:   1  5   9   14  18  22  27  31  35  39
b:   2  6   11  15  19  23  28  32  36  40
c:   3  7   12  16  20  24  29  33  37  41
d:   4  8   13  17  21  25  30  34  38  42
e:  10  26  45  62  78  94 114 130 146 162
		

Crossrefs

Programs

  • Mathematica
    z = 200;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = {1}; b = {2}; c = {3}; d = {4}; e = {}; AppendTo[e,
    Last[a] + Last[b] + Last[c] + Last[d]];
    Do[{AppendTo[a, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[b, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[c, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[d, mex[Flatten[{a, b, c, d, e}], 1]],
       AppendTo[e, Last[a] + Last[b] + Last[c] + Last[d]]}, {z}];
    Take[a, 100]  (* A299405 *)
    Take[b, 100]  (* A299637 *)
    Take[c, 100]  (* A299638 *)
    Take[d, 100]  (* A299641 *)
    Take[e, 100]  (* A299409 *)
Showing 1-10 of 34 results. Next