A300239 Difference between A032742 (the largest proper divisor of n) and its Möbius transform (A300236).
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 5, 1, 6, 1, 1, 1, 8, 1, 1, 3, 8, 1, 11, 1, 8, 1, 1, 1, 12, 1, 1, 1, 12, 1, 15, 1, 12, 7, 1, 1, 16, 1, 9, 1, 14, 1, 15, 1, 16, 1, 1, 1, 22, 1, 1, 9, 16, 1, 23, 1, 18, 1, 17, 1, 24, 1, 1, 9, 20, 1, 27, 1, 24, 9, 1, 1, 30, 1, 1, 1, 24, 1, 29, 1, 24, 1, 1, 1, 32, 1, 13, 13, 30, 1, 35, 1, 28, 17
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
Table[n/FactorInteger[n][[1, 1]] - DivisorSum[n, # MoebiusMu[n/#]/FactorInteger[#][[1, 1]] &], {n, 105}] (* or *) Fold[Function[{a, n}, Append[a, {Abs@ Total@ Map[MoebiusMu[n/#] a[[#, -1]] &, Most@ Divisors@ n], n/FactorInteger[n][[1, 1]]}]], {{0, 1}}, Range[2, 105]][[All, 1]] (* Michael De Vlieger, Mar 10 2018 *)
-
PARI
A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1])); A300239(n) = -sumdiv(n,d,(d
A032742(d));
Comments