A301987
Heinz numbers of integer partitions whose product is equal to their sum.
Original entry on oeis.org
2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 84, 89, 97, 101, 103, 107, 108, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 200, 211, 223, 227, 229, 233, 239, 241, 251
Offset: 1
Sequence of reversed integer partitions begins: (1), (2), (3), (4), (2 2), (5), (6), (7), (8), (9), (10), (1 2 3), (11), (12), (13), (14), (15), (16), (17), (18), (19), (20), (21), (22), (23), (1 1 2 4), (24), (25), (26), (27), (28), (1 1 2 2 2), (29), (30).
-
q:= n-> (l-> mul(i, i=l)=add(i, i=l))(map(i->
numtheory[pi](i[1])$i[2], ifactors(n)[2])):
select(q, [$1..300])[]; # Alois P. Heinz, Mar 27 2019
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[300],Total[primeMS[#]]===Times@@primeMS[#]&]
A340387
Numbers whose sum of prime indices is twice their number, counted with multiplicity in both cases.
Original entry on oeis.org
1, 3, 9, 10, 27, 28, 30, 81, 84, 88, 90, 100, 208, 243, 252, 264, 270, 280, 300, 544, 624, 729, 756, 784, 792, 810, 840, 880, 900, 1000, 1216, 1632, 1872, 2080, 2187, 2268, 2352, 2376, 2430, 2464, 2520, 2640, 2700, 2800, 2944, 3000, 3648, 4896, 5440, 5616
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
9: {2,2}
10: {1,3}
27: {2,2,2}
28: {1,1,4}
30: {1,2,3}
81: {2,2,2,2}
84: {1,1,2,4}
88: {1,1,1,5}
90: {1,2,2,3}
100: {1,1,3,3}
208: {1,1,1,1,6}
243: {2,2,2,2,2}
252: {1,1,2,2,4}
Partitions of 2n into n parts are counted by
A000041.
The number of prime indices alone is
A001222.
The sum of prime indices alone is
A056239.
Allowing sum to be any multiple of length gives
A067538, ranked by
A316413.
A301987 lists numbers whose sum of prime indices equals their product, with nonprime case
A301988.
Cf.
A000720,
A001221,
A001414,
A006125,
A006129,
A112798,
A316428,
A320911,
A325037,
A325044,
A330950,
A331385,
A331416.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Total[primeMS[#]]==2*PrimeOmega[#]&]
A344415
Numbers whose greatest prime index is half their sum of prime indices.
Original entry on oeis.org
4, 9, 12, 25, 30, 40, 49, 63, 70, 84, 112, 121, 154, 165, 169, 198, 220, 264, 273, 286, 289, 325, 351, 352, 361, 364, 390, 442, 468, 520, 529, 561, 595, 624, 646, 714, 741, 748, 765, 832, 841, 850, 874, 918, 931, 952, 961, 988, 1020, 1045, 1173, 1197, 1224
Offset: 1
The sequence of terms together with their prime indices begins:
4: {1,1} 198: {1,2,2,5}
9: {2,2} 220: {1,1,3,5}
12: {1,1,2} 264: {1,1,1,2,5}
25: {3,3} 273: {2,4,6}
30: {1,2,3} 286: {1,5,6}
40: {1,1,1,3} 289: {7,7}
49: {4,4} 325: {3,3,6}
63: {2,2,4} 351: {2,2,2,6}
70: {1,3,4} 352: {1,1,1,1,1,5}
84: {1,1,2,4} 361: {8,8}
112: {1,1,1,1,4} 364: {1,1,4,6}
121: {5,5} 390: {1,2,3,6}
154: {1,4,5} 442: {1,6,7}
165: {2,3,5} 468: {1,1,2,2,6}
169: {6,6} 520: {1,1,1,3,6}
The partitions with these Heinz numbers are counted by
A035363.
A001222 counts prime factors with multiplicity.
A301987 lists numbers whose sum of prime indices equals their product.
A334201 adds up all prime indices except the greatest.
Cf.
A000070,
A001414,
A209816,
A301988,
A316413,
A316428,
A320924,
A325037,
A325038,
A325044,
A330950,
A344293,
A344294,
A344297.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max[primeMS[#]]==Total[primeMS[#]]/2&]
A344414
Heinz numbers of integer partitions whose sum is at most twice their greatest part.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1} 20: {1,1,3} 39: {2,6}
3: {2} 21: {2,4} 40: {1,1,1,3}
4: {1,1} 22: {1,5} 41: {13}
5: {3} 23: {9} 42: {1,2,4}
6: {1,2} 25: {3,3} 43: {14}
7: {4} 26: {1,6} 44: {1,1,5}
9: {2,2} 28: {1,1,4} 46: {1,9}
10: {1,3} 29: {10} 47: {15}
11: {5} 30: {1,2,3} 49: {4,4}
12: {1,1,2} 31: {11} 51: {2,7}
13: {6} 33: {2,5} 52: {1,1,6}
14: {1,4} 34: {1,7} 53: {16}
15: {2,3} 35: {3,4} 55: {3,5}
17: {7} 37: {12} 56: {1,1,1,4}
19: {8} 38: {1,8} 57: {2,8}
For example, 56 has prime indices {1,1,1,4} and 7 <= 2*4, so 56 is in the sequence. On the other hand, 224 has prime indices {1,1,1,1,1,4} and 9 > 2*4, so 224 is not in the sequence.
These partitions are counted by
A025065 but are different from palindromic partitions, which have Heinz numbers
A265640.
The opposite even-weight version appears to be
A320924, counted by
A209816.
The case of equality in the conjugate version is
A340387.
A001222 counts prime factors with multiplicity.
A301987 lists numbers whose sum of prime indices equals their product.
A334201 adds up all prime indices except the greatest.
Cf.
A001414,
A067538,
A301988,
A316413,
A316428,
A325037,
A325038,
A325044,
A330950,
A344294,
A344297.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max[primeMS[#]]>=Total[primeMS[#]]/2&]
A335405
Number of integer compositions of n with product n.
Original entry on oeis.org
0, 1, 1, 1, 2, 1, 7, 1, 23, 11, 21, 1, 241, 1, 43, 73, 1092, 1, 1041, 1, 1339, 157, 111, 1, 23023, 137, 157, 1603, 3945, 1, 11599, 1, 153446, 421, 273, 601, 204586, 1, 343, 601, 206351, 1, 34789, 1, 16273, 25179, 507, 1, 5992730, 667, 33913, 1057, 27291, 1
Offset: 0
The compositions for n = 1, 4, 6, 8, 9, 10:
(1) (4) (6) (8) (9) (10)
(22) (123) (1124) (11133) (11125)
(132) (1142) (11313) (11152)
(213) (1214) (11331) (11215)
(231) (1241) (13113) (11251)
(312) (1412) (13131) (11512)
(321) (1421) (13311) (11521)
(2114) (31113) (12115)
(2141) (31131) (12151)
(2411) (31311) (12511)
(4112) (33111) (15112)
(4121) (15121)
(4211) (15211)
(11222) (21115)
(12122) (21151)
(12212) (21511)
(12221) (25111)
(21122) (51112)
(21212) (51121)
(21221) (51211)
(22112) (52111)
(22121)
(22211)
Compositions are counted by
A011782.
These compositions are ranked by
A335404.
-
Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],Times@@#==n&]],{n,0,30}]
A379319
Even numbers whose product of prime indices is a multiple of their sum of prime indices.
Original entry on oeis.org
2, 30, 84, 108, 150, 154, 190, 198, 200, 264, 364, 390, 442, 468, 490, 506, 580, 624, 630, 658, 700, 714, 810, 840, 846, 874, 900, 918, 952, 988, 1020, 1080, 1110, 1118, 1120, 1224, 1254, 1330, 1430, 1440, 1480, 1596, 1632, 1666, 1708, 1710, 1716, 1786, 1794
Offset: 1
The prime indices of 150 are {1,2,3,3}, with sum 9 and product 18, so 150 is in the sequence.
The terms together with their prime indices begin:
2: {1}
30: {1,2,3}
84: {1,1,2,4}
108: {1,1,2,2,2}
150: {1,2,3,3}
154: {1,4,5}
190: {1,3,8}
198: {1,2,2,5}
200: {1,1,1,3,3}
264: {1,1,1,2,5}
364: {1,1,4,6}
390: {1,2,3,6}
442: {1,6,7}
468: {1,1,2,2,6}
490: {1,3,4,4}
For nonprime instead of even we have
A326150.
Partitions of this type are counted by
A379320.
For squarefree instead of even we have
A379844.
Divide all terms by 2 to get
A380217.
A003963 multiplies together prime indices.
Counting and ranking multisets by comparing sum and product:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],MemberQ[prix[#],1]&&Divisible[Times@@prix[#],Total[prix[#]]]&]
A335404
Numbers k such that the k-th composition in standard order (A066099) has the same product as sum.
Original entry on oeis.org
1, 2, 4, 8, 10, 16, 32, 37, 38, 41, 44, 50, 52, 64, 128, 139, 141, 142, 163, 171, 173, 174, 177, 181, 182, 184, 186, 197, 198, 209, 213, 214, 216, 218, 226, 232, 234, 256, 295, 307, 313, 316, 403, 409, 412, 457, 460, 484, 512, 535, 539, 541, 542, 647, 707, 737
Offset: 1
The sequence together with the corresponding compositions begins:
1: (1)
2: (2)
4: (3)
8: (4)
10: (2,2)
16: (5)
32: (6)
37: (3,2,1)
38: (3,1,2)
41: (2,3,1)
44: (2,1,3)
50: (1,3,2)
52: (1,2,3)
64: (7)
128: (8)
139: (4,2,1,1)
141: (4,1,2,1)
142: (4,1,1,2)
163: (2,4,1,1)
171: (2,2,2,1,1)
The lengths of standard compositions are given by
A000120.
Sum of standard compositions is
A070939.
Product of standard compositions is
A124758.
Taking GCD instead of product gives
A131577.
The version for prime indices is
A301987.
The version for prime indices of nonprime numbers is
A301988.
These compositions are counted by
A335405.
Cf.
A001055,
A003963,
A066099,
A096111,
A124767,
A228351,
A233249,
A272919,
A333219,
A333220,
A331579.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,100],Times@@stc[#]==Plus@@stc[#]&]
A380217
Numbers whose product of prime indices is a multiple of their sum of prime indices plus one.
Original entry on oeis.org
1, 15, 42, 54, 75, 77, 95, 99, 100, 132, 182, 195, 221, 234, 245, 253, 290, 312, 315, 329, 350, 357, 405, 420, 423, 437, 450, 459, 476, 494, 510, 540, 555, 559, 560, 612, 627, 665, 715, 720, 740, 798, 816, 833, 854, 855, 858, 893, 897, 899, 979, 1026, 1064
Offset: 1
The prime indices of 75 are {2,3,3}, with product 18 and sum 8, and since 18 is a multiple of 8+1, 75 is in the sequence.
The terms together with their prime indices begin:
1: {}
15: {2,3}
42: {1,2,4}
54: {1,2,2,2}
75: {2,3,3}
77: {4,5}
95: {3,8}
99: {2,2,5}
100: {1,1,3,3}
132: {1,1,2,5}
182: {1,4,6}
195: {2,3,6}
221: {6,7}
234: {1,2,2,6}
245: {3,4,4}
Partitions of this type are counted by
A379320.
Counting and ranking multisets by comparing sum and product:
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Divisible[Times@@prix[#],1+Total[prix[#]]]&]
-
vpind(n)=my(v=List(), f=factor(n)); for(i=1, #f~, for(j=1, f[i, 2], listput(v, primepi(f[i, 1])))); Vec(v); \\ A112798
isok(k) = my(vind = vpind(k)); (vecprod(vind) % (vecsum(vind)+1)) == 0; \\ Michel Marcus, Jan 21 2025
A344413
Numbers n whose sum of prime indices A056239(n) is even and is at least twice the number of prime factors A001222(n).
Original entry on oeis.org
1, 3, 7, 9, 10, 13, 19, 21, 22, 25, 27, 28, 29, 30, 34, 37, 39, 43, 46, 49, 52, 53, 55, 57, 61, 62, 63, 66, 70, 71, 75, 76, 79, 81, 82, 84, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 111, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 37: {12} 75: {2,3,3}
3: {2} 39: {2,6} 76: {1,1,8}
7: {4} 43: {14} 79: {22}
9: {2,2} 46: {1,9} 81: {2,2,2,2}
10: {1,3} 49: {4,4} 82: {1,13}
13: {6} 52: {1,1,6} 84: {1,1,2,4}
19: {8} 53: {16} 85: {3,7}
21: {2,4} 55: {3,5} 87: {2,10}
22: {1,5} 57: {2,8} 88: {1,1,1,5}
25: {3,3} 61: {18} 89: {24}
27: {2,2,2} 62: {1,11} 90: {1,2,2,3}
28: {1,1,4} 63: {2,2,4} 91: {4,6}
29: {10} 66: {1,2,5} 94: {1,15}
30: {1,2,3} 70: {1,3,4} 100: {1,1,3,3}
34: {1,7} 71: {20} 101: {26}
For example, 75 has 3 prime indices {2,3,3} with sum 8 >= 2*3, so 75 is in the sequence.
These are the Heinz numbers of partitions counted by
A209816 and
A110618.
A subset of
A300061 (sum of prime indices is even).
The conjugate version appears to be
A320924 (allowing odd weights:
A322109).
Allowing odd weights gives
A344291.
The opposite version allowing odd weights is
A344296.
The conjugate opposite version allowing odd weights is
A344414.
The case of equality in the conjugate case is
A344415.
A001222 counts prime factors with multiplicity.
A301987 lists numbers whose sum of prime indices equals their product.
A330950 counts partitions of n with Heinz number divisible by n.
A334201 adds up all prime indices except the greatest.
Cf.
A001414,
A025065,
A067538,
A301988,
A316413,
A316428,
A325037,
A325038,
A325044,
A338914,
A344294,
A344297.
-
filter:= proc(n) local F,a,t;
F:= ifactors(n)[2];
a:= add((numtheory:-pi(t[1])-2)*t[2],t=F);
a::even and a >= 0
end proc:
select(filter, [$1..300]); # Robert Israel, Oct 10 2024
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],EvenQ[Total[primeMS[#]]]&&PrimeOmega[#]<=Total[primeMS[#]]/2&]
A380216
Numbers whose prime indices have (product)/(sum) equal to an integer > 1.
Original entry on oeis.org
49, 63, 65, 81, 125, 150, 154, 165, 169, 190, 198, 259, 273, 333, 351, 361, 364, 385, 390, 435, 442, 468, 481, 490, 495, 506, 525, 561, 580, 595, 609, 630, 658, 675, 700, 714, 741, 765, 781, 783, 810, 840, 841, 846, 874, 900, 918, 925, 931, 935, 952, 988
Offset: 1
The terms together with their prime indices begin:
49: {4,4}
63: {2,2,4}
65: {3,6}
81: {2,2,2,2}
125: {3,3,3}
150: {1,2,3,3}
154: {1,4,5}
165: {2,3,5}
169: {6,6}
190: {1,3,8}
198: {1,2,2,5}
259: {4,12}
273: {2,4,6}
333: {2,2,12}
351: {2,2,2,6}
361: {8,8}
364: {1,1,4,6}
For example, 198 has prime indices {1,2,2,5}, and 20/10 is an integer > 1, so 198 is in the sequence.
The squarefree case is
A326158 without first term.
Partitions of this type are counted by
A380219.
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
Cf.
A000720,
A001222,
A028422,
A036844,
A112798,
A301988,
A319000,
A324850,
A324851,
A326156,
A379319,
A379844.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,1000],Divisible[Times@@prix[#],Total[prix[#]]]&&!SameQ[Times@@prix[#],Total[prix[#]]]&]
Showing 1-10 of 12 results.
Comments