A025065
Number of palindromic partitions of n.
Original entry on oeis.org
1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 19, 19, 30, 30, 45, 45, 67, 67, 97, 97, 139, 139, 195, 195, 272, 272, 373, 373, 508, 508, 684, 684, 915, 915, 1212, 1212, 1597, 1597, 2087, 2087, 2714, 2714, 3506, 3506, 4508, 4508, 5763, 5763, 7338, 7338, 9296, 9296, 11732, 11732, 14742, 14742, 18460, 18460, 23025, 23025, 28629, 28629
Offset: 0
The partitions for the first few values of n are as follows:
n: partitions .......................... number
1: 1 ................................... 1
2: 2 11 ................................ 2
3: 3 111 ............................... 2
4: 4 22 121 1111 ....................... 4
5: 5 131 212 11111 ..................... 4
6: 6 141 33 222 1221 11211 111111 ...... 7
7: 7 151 313 11311 232 21112 1111111 ... 7
From _Reinhard Zumkeller_, Jan 23 2010: (Start)
Partitions into 1,2,4,6,... for the first values of n:
1: 1 ....................................... 1
2: 2 11 .................................... 2
3: 21 111 .................................. 2
4: 4 22 211 1111 ........................... 4
5: 41 221 2111 11111 ....................... 4
6: 6 42 4211 222 2211 21111 111111.......... 7
7: 61 421 42111 2221 22111 211111 1111111 .. 7. (End)
The ordered version (palindromic compositions) is
A016116.
The case of palindromic prime signature is
A242414.
Palindromic partitions are ranked by
A265640, with complement
A229153.
The case of palindromic plane trees is
A319436.
The multiplicative version (palindromic factorizations) is
A344417.
A000569 counts graphical partitions.
Cf.
A000041,
A067538,
A143773,
A209816,
A338914,
A338915,
A340387,
A344296,
A344414,
A344415,
A344416.
-
a025065 = p (1:[2,4..]) where
p [] _ = 0
p _ 0 = 1
p ks'@(k:ks) m | m < k = 0
| otherwise = p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Aug 12 2011
-
import Data.List (group)
a025065 = length . filter (<= 1) .
map (sum . map ((`mod` 2) . length) . group) . ps 1
where ps x 0 = [[]]
ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
-- Reinhard Zumkeller, Dec 18 2013
-
Map[Length[Select[IntegerPartitions[#], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &]] &, Range[40]] (* Peter J. C. Moses, Jan 20 2014 *)
n = 8; Select[IntegerPartitions[n], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &] (* Peter J. C. Moses, Jan 20 2014 *)
CoefficientList[Series[1/((1 - x) Product[1 - x^(2 n), {n, 1, 50}]), {x, 0, 60}], x] (* Clark Kimberling, Mar 14 2014 *)
-
N=66; q='q+O('q^N); Vec( 1/((1-q)*eta(q^2)) ) \\ Joerg Arndt, Mar 11 2014
Prepended a(0)=1, added more terms,
Joerg Arndt, Mar 11 2014
A035363
Number of partitions of n into even parts.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 22, 0, 30, 0, 42, 0, 56, 0, 77, 0, 101, 0, 135, 0, 176, 0, 231, 0, 297, 0, 385, 0, 490, 0, 627, 0, 792, 0, 1002, 0, 1255, 0, 1575, 0, 1958, 0, 2436, 0, 3010, 0, 3718, 0, 4565, 0, 5604, 0, 6842, 0, 8349, 0, 10143, 0, 12310, 0
Offset: 0
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(12)=11 symmetric unimodal compositions of 12+2=14 where the maximal part appears twice:
01: [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
02: [ 1 1 1 1 3 3 1 1 1 1 ]
03: [ 1 1 1 4 4 1 1 1 ]
04: [ 1 1 2 3 3 2 1 1 ]
05: [ 1 1 5 5 1 1 ]
06: [ 1 2 4 4 2 1 ]
07: [ 1 6 6 1 ]
08: [ 2 2 3 3 2 2 ]
09: [ 2 5 5 2 ]
10: [ 3 4 4 3 ]
11: [ 7 7 ]
There are a(14)=15 symmetric unimodal compositions of 14 where the maximal part appears an even number of times:
01: [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
03: [ 1 1 1 1 3 3 1 1 1 1 ]
04: [ 1 1 1 2 2 2 2 1 1 1 ]
05: [ 1 1 1 4 4 1 1 1 ]
06: [ 1 1 2 3 3 2 1 1 ]
07: [ 1 1 5 5 1 1 ]
08: [ 1 2 2 2 2 2 2 1 ]
09: [ 1 2 4 4 2 1 ]
10: [ 1 3 3 3 3 1 ]
11: [ 1 6 6 1 ]
12: [ 2 2 3 3 2 2 ]
13: [ 2 5 5 2 ]
14: [ 3 4 4 3 ]
15: [ 7 7 ]
(End)
a(8)=5 because we have [8], [6,2], [4,4], [4,2,2], and [2,2,2,2]. - _Emeric Deutsch_, Jan 27 2016
From _Gus Wiseman_, May 22 2021: (Start)
The a(0) = 1 through a(12) = 11 partitions into even parts are the following (empty columns shown as dots, A = 10, C = 12). The Heinz numbers of these partitions are given by A066207.
() . (2) . (4) . (6) . (8) . (A) . (C)
(22) (42) (44) (64) (66)
(222) (62) (82) (84)
(422) (442) (A2)
(2222) (622) (444)
(4222) (642)
(22222) (822)
(4422)
(6222)
(42222)
(222222)
(End)
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
Bisection (even part) gives the partition numbers
A000041.
Note: A-numbers of ranking sequences are in parentheses below.
The version for parts divisible by 3 instead of 2 is
A035377.
The Heinz numbers of these partitions are given by
A066207.
The ordered version (compositions) is
A077957 prepended by (1,0).
The multiplicative version (factorizations) is
A340785.
The following count partitions of even length:
Cf.
A000041,
A000290,
A087897,
A100484,
A110618,
A209816,
A210249,
A233771,
A339004,
A340385,
A340387,
A340786,
A341447.
-
ZL:= [S, {C = Cycle(B), S = Set(C), E = Set(B), B = Prod(Z,Z)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..69); # Zerinvary Lajos, Mar 26 2008
g := 1/mul(1-x^(2*k), k = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0 .. 78); # Emeric Deutsch, Jan 27 2016
# Using the function EULER from Transforms (see link at the bottom of the page).
[1,op(EULER([0,1,seq(irem(n,2),n=0..66)]))]; # Peter Luschny, Aug 19 2020
# next Maple program:
a:= n-> `if`(n::odd, 0, combinat[numbpart](n/2)):
seq(a(n), n=0..84); # Alois P. Heinz, Jun 22 2021
-
nmax = 50; s = Range[2, nmax, 2];
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
-
from sympy import npartitions
def A035363(n): return 0 if n&1 else npartitions(n>>1) # Chai Wah Wu, Sep 23 2023
A320924
Heinz numbers of multigraphical partitions.
Original entry on oeis.org
1, 4, 9, 12, 16, 25, 27, 30, 36, 40, 48, 49, 63, 64, 70, 75, 81, 84, 90, 100, 108, 112, 120, 121, 144, 147, 154, 160, 165, 169, 175, 189, 192, 196, 198, 210, 220, 225, 243, 250, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 343, 351, 352, 360
Offset: 1
The sequence of all multigraphical partitions begins: (), (11), (22), (211), (1111), (33), (222), (321), (2211), (3111), (21111), (44), (422), (111111), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (221111).
From _Gus Wiseman_, May 23 2021: (Start)
The sequence of terms together with their prime indices and a multigraph realizing each begins:
1: () | {}
4: (11) | {{1,2}}
9: (22) | {{1,2},{1,2}}
12: (112) | {{1,3},{2,3}}
16: (1111) | {{1,2},{3,4}}
25: (33) | {{1,2},{1,2},{1,2}}
27: (222) | {{1,2},{1,3},{2,3}}
30: (123) | {{1,3},{2,3},{2,3}}
36: (1122) | {{1,2},{3,4},{3,4}}
40: (1113) | {{1,4},{2,4},{3,4}}
48: (11112) | {{1,2},{3,5},{4,5}}
49: (44) | {{1,2},{1,2},{1,2},{1,2}}
63: (224) | {{1,3},{1,3},{2,3},{2,3}}
(End)
These partitions are counted by
A209816.
The case with odd weights is
A322109.
The conjugate case of equality is
A340387.
The conjugate version with odd weights allowed is
A344291.
The conjugate opposite version is
A344292.
The opposite version with odd weights allowed is
A344296.
The conjugate opposite version with odd weights allowed is
A344414.
A000070 counts non-multigraphical partitions.
A025065 counts palindromic partitions.
A035363 counts partitions into even parts.
A110618 counts partitions that are the vertex-degrees of some set multipartition with no singletons.
A334201 adds up all prime indices except the greatest.
Cf.
A000041,
A000569,
A007717,
A096373,
A265640,
A283877,
A306005,
A318361,
A320459,
A320911,
A320922,
A320923,
A320925.
-
prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
Select[Range[1000],prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]!={}&]
A086543
Number of partitions of n with at least one odd part.
Original entry on oeis.org
0, 1, 1, 3, 3, 7, 8, 15, 17, 30, 35, 56, 66, 101, 120, 176, 209, 297, 355, 490, 585, 792, 946, 1255, 1498, 1958, 2335, 3010, 3583, 4565, 5428, 6842, 8118, 10143, 12013, 14883, 17592, 21637, 25525, 31185, 36711, 44583, 52382, 63261, 74173, 89134, 104303, 124754, 145698, 173525, 202268
Offset: 0
a(4)=3 because we have [3,1],[2,1,1] and [1,1,1] ([4] and [2,2] do not qualify).
These partitions have ranks
A366322.
-
g:=sum(x^(2*k-1)/product(1-x^j,j=1..2*k-1)/product(1-x^(2*j),j=k..70),k=1..70): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..45); # Emeric Deutsch, Mar 30 2006
-
nn=50;CoefficientList[Series[Sum[x^(2k-1)/Product[1-x^j,{j,1,2k-1}] /Product[(1-x^(2j)),{j,k,nn}],{k,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *)
Table[Length[Select[IntegerPartitions[n],Max[#]!=n/2&]],{n,0,30}] (* Gus Wiseman, Oct 12 2023 *)
-
x='x+O('x^66); concat([0], Vec(1/eta(x)-1/eta(x^2)) ) \\ Joerg Arndt, May 04 2013
A238628
Number of partitions p of n such that n - max(p) is a part of p.
Original entry on oeis.org
0, 1, 1, 3, 2, 5, 3, 8, 4, 11, 5, 16, 6, 21, 7, 29, 8, 38, 9, 51, 10, 66, 11, 88, 12, 113, 13, 148, 14, 190, 15, 246, 16, 313, 17, 402, 18, 508, 19, 646, 20, 812, 21, 1023, 22, 1277, 23, 1598, 24, 1982, 25, 2461, 26, 3036, 27, 3745, 28, 4593, 29, 5633
Offset: 1
a(6) counts these partitions: 51, 42, 33, 321, 3111.
The complement is counted by
A365825.
These partitions are ranked by
A366318.
A182616 counts partitions of 2n that do not contain n, strict
A365828.
-
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, n - Max[p]]], {n, 50}]
-
a(n) = my(res = floor(n/2)); if(!bitand(n, 1), res+=(numbpart(n/2)-1)); res
-
from sympy.utilities.iterables import partitions
def A238628(n): return sum(1 for p in partitions(n) if n-max(p,default=0) in p) # Chai Wah Wu, Sep 21 2023
A344291
Numbers whose sum of prime indices is at least twice their number of prime indices (counted with multiplicity).
Original entry on oeis.org
1, 3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 25: {3,3} 43: {14} 62: {1,11}
3: {2} 26: {1,6} 44: {1,1,5} 63: {2,2,4}
5: {3} 27: {2,2,2} 45: {2,2,3} 65: {3,6}
7: {4} 28: {1,1,4} 46: {1,9} 66: {1,2,5}
9: {2,2} 29: {10} 47: {15} 67: {19}
10: {1,3} 30: {1,2,3} 49: {4,4} 68: {1,1,7}
11: {5} 31: {11} 50: {1,3,3} 69: {2,9}
13: {6} 33: {2,5} 51: {2,7} 70: {1,3,4}
14: {1,4} 34: {1,7} 52: {1,1,6} 71: {20}
15: {2,3} 35: {3,4} 53: {16} 73: {21}
17: {7} 37: {12} 55: {3,5} 74: {1,12}
19: {8} 38: {1,8} 57: {2,8} 75: {2,3,3}
21: {2,4} 39: {2,6} 58: {1,10} 76: {1,1,8}
22: {1,5} 41: {13} 59: {17} 77: {4,5}
23: {9} 42: {1,2,4} 61: {18} 78: {1,2,6}
For example, the prime indices of 45 are {2,2,3} with sum 7 >= 2*3, so 45 is in the sequence.
The partitions with these Heinz numbers are counted by
A110618.
The conjugate opposite version is
A344414.
The conjugate case of equality is
A344415.
A001221 counts distinct prime indices.
A001222 counts prime indices with multiplicity.
A344414
Heinz numbers of integer partitions whose sum is at most twice their greatest part.
Original entry on oeis.org
2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1} 20: {1,1,3} 39: {2,6}
3: {2} 21: {2,4} 40: {1,1,1,3}
4: {1,1} 22: {1,5} 41: {13}
5: {3} 23: {9} 42: {1,2,4}
6: {1,2} 25: {3,3} 43: {14}
7: {4} 26: {1,6} 44: {1,1,5}
9: {2,2} 28: {1,1,4} 46: {1,9}
10: {1,3} 29: {10} 47: {15}
11: {5} 30: {1,2,3} 49: {4,4}
12: {1,1,2} 31: {11} 51: {2,7}
13: {6} 33: {2,5} 52: {1,1,6}
14: {1,4} 34: {1,7} 53: {16}
15: {2,3} 35: {3,4} 55: {3,5}
17: {7} 37: {12} 56: {1,1,1,4}
19: {8} 38: {1,8} 57: {2,8}
For example, 56 has prime indices {1,1,1,4} and 7 <= 2*4, so 56 is in the sequence. On the other hand, 224 has prime indices {1,1,1,1,1,4} and 9 > 2*4, so 224 is not in the sequence.
These partitions are counted by
A025065 but are different from palindromic partitions, which have Heinz numbers
A265640.
The opposite even-weight version appears to be
A320924, counted by
A209816.
The case of equality in the conjugate version is
A340387.
A001222 counts prime factors with multiplicity.
A301987 lists numbers whose sum of prime indices equals their product.
A334201 adds up all prime indices except the greatest.
Cf.
A001414,
A067538,
A301988,
A316413,
A316428,
A325037,
A325038,
A325044,
A330950,
A344294,
A344297.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Max[primeMS[#]]>=Total[primeMS[#]]/2&]
A344416
Heinz numbers of integer partitions whose sum is even and is at most twice the greatest part.
Original entry on oeis.org
3, 4, 7, 9, 10, 12, 13, 19, 21, 22, 25, 28, 29, 30, 34, 37, 39, 40, 43, 46, 49, 52, 53, 55, 57, 61, 62, 63, 66, 70, 71, 76, 79, 82, 84, 85, 87, 88, 89, 91, 94, 101, 102, 107, 111, 112, 113, 115, 116, 117, 118, 121, 129, 130, 131, 133, 134, 136, 138, 139, 146
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2} 37: {12} 71: {20}
4: {1,1} 39: {2,6} 76: {1,1,8}
7: {4} 40: {1,1,1,3} 79: {22}
9: {2,2} 43: {14} 82: {1,13}
10: {1,3} 46: {1,9} 84: {1,1,2,4}
12: {1,1,2} 49: {4,4} 85: {3,7}
13: {6} 52: {1,1,6} 87: {2,10}
19: {8} 53: {16} 88: {1,1,1,5}
21: {2,4} 55: {3,5} 89: {24}
22: {1,5} 57: {2,8} 91: {4,6}
25: {3,3} 61: {18} 94: {1,15}
28: {1,1,4} 62: {1,11} 101: {26}
29: {10} 63: {2,2,4} 102: {1,2,7}
30: {1,2,3} 66: {1,2,5} 107: {28}
34: {1,7} 70: {1,3,4} 111: {2,12}
These partitions are counted by
A000070 = even-indexed terms of
A025065.
The opposite version with odd weights allowed appears to be
A322109.
The conjugate opposite version allowing odds is
A344291, counted by
A110618.
A001222 counts prime factors with multiplicity.
A265640 lists Heinz numbers of palindromic partitions.
A301987 lists numbers whose sum of prime indices equals their product.
A334201 adds up all prime indices except the greatest.
A340387 lists Heinz numbers of partitions whose sum is twice their length.
Cf.
A001414,
A074761,
A316413,
A316428,
A325037,
A325038,
A325044,
A330950,
A344293,
A344294,
A344297.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],EvenQ[Total[primeMS[#]]]&&Max[primeMS[#]]>=Total[primeMS[#]]/2&]
A322109
Heinz numbers of integer partitions that are the vertex-degrees of some set multipartition (multiset of nonempty sets) with no singletons.
Original entry on oeis.org
1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, 36, 40, 45, 48, 49, 50, 54, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 180, 189, 192, 196, 198, 200, 210
Offset: 1
Each term paired with its Heinz partition and a realizing set multipartition with no singletons:
1: (): {}
4: (11): {{1,2}}
8: (111): {{1,2,3}}
9: (22): {{1,2},{1,2}}
12: (211): {{1,2},{1,3}}
16: (1111): {{1,2,3,4}}
18: (221): {{1,2},{1,2,3}}
24: (2111): {{1,2},{1,3,4}}
25: (33): {{1,2},{1,2},{1,2}}
27: (222): {{1,2,3},{1,2,3}}
30: (321): {{1,2},{1,2},{1,3}}
32: (11111): {{1,2,3,4,5}}
36: (2211): {{1,2},{1,2,3,4}}
40: (3111): {{1,2},{1,3},{1,4}}
These partitions are counted by
A110618.
The even-weight version is
A320924.
The conjugate case of equality is
A340387.
The opposite conjugate version is
A344296.
The opposite even-weight version is
A344416.
A000070 counts non-multigraphical partitions.
A025065 counts palindromic partitions.
A035363 counts partitions into even parts.
A334201 adds up all prime indices except the greatest.
-
nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
sqnopfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqnopfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],!PrimeQ[#]&&SquareFreeQ[#]&]}]]
Select[Range[100],Length[sqnopfacs[Times@@Prime/@nrmptn[#]]]>0&]
A365828
Number of strict integer partitions of 2n not containing n.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 12, 18, 27, 39, 55, 78, 108, 148, 201, 270, 359, 475, 623, 811, 1050, 1351, 1728, 2201, 2789, 3517, 4418, 5527, 6887, 8553, 10585, 13055, 16055, 19685, 24065, 29343, 35685, 43287, 52387, 63253, 76200, 91605, 109897, 131575, 157231, 187539
Offset: 0
The a(0) = 1 through a(6) = 12 strict partitions:
() (2) (4) (6) (8) (10) (12)
(3,1) (4,2) (5,3) (6,4) (7,5)
(5,1) (6,2) (7,3) (8,4)
(7,1) (8,2) (9,3)
(5,2,1) (9,1) (10,2)
(6,3,1) (11,1)
(7,2,1) (5,4,3)
(4,3,2,1) (7,3,2)
(7,4,1)
(8,3,1)
(9,2,1)
(5,4,2,1)
The complement is counted by
A111133.
A000009 counts strict integer partitions.
A046663 counts partitions with no submultiset summing to k, strict
A365663.
-
Table[Length[Select[IntegerPartitions[2n],UnsameQ@@#&&FreeQ[#,n]&]],{n,0,30}]
Showing 1-10 of 20 results.
Comments