cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A025065 Number of palindromic partitions of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 19, 19, 30, 30, 45, 45, 67, 67, 97, 97, 139, 139, 195, 195, 272, 272, 373, 373, 508, 508, 684, 684, 915, 915, 1212, 1212, 1597, 1597, 2087, 2087, 2714, 2714, 3506, 3506, 4508, 4508, 5763, 5763, 7338, 7338, 9296, 9296, 11732, 11732, 14742, 14742, 18460, 18460, 23025, 23025, 28629, 28629
Offset: 0

Views

Author

Keywords

Comments

That is, the number of partitions of n into parts which can be listed in palindromic order.
Alternatively, number of partitions of n into parts from the set {1,2,4,6,8,10,12,...}. - T. D. Noe, Aug 05 2005
Also, partial sums of A035363.
Also number of partitions of n with at most one part occurring an odd number of times. - Reinhard Zumkeller, Dec 18 2013
The first Mathematica program computes terms of A025065; the second computes the k palindromic partitions of user-chosen n. - Clark Kimberling, Jan 20 2014
a(n) is the number of partitions p of n+1 such that 2*max(p) > n+1. - Clark Kimberling, Apr 20 2014.
From Gus Wiseman, Nov 28 2018: (Start)
Also the number of integer partitions of n + 2 that are the vertex-degrees of some hypertree. For example, the a(6) = 7 partitions of 8 that are the vertex-degrees of some hypertree, together with a realizing hypertree are:
(41111): {{1,2},{1,3},{1,4},{1,5}}
(32111): {{1,2},{1,3},{1,4},{2,5}}
(22211): {{1,2},{1,3},{2,4},{3,5}}
(311111): {{1,2},{1,3},{1,4,5,6}}
(221111): {{1,2},{1,3},{2,4,5,6}}
(2111111): {{1,2},{1,3,4,5,6,7}}
(11111111): {{1,2,3,4,5,6,7,8}}
(End)
Conjecture: a(n) is the length of maximal initial segment of A308355(n-1) that is identical to row n of A128628, for n >= 2. - Clark Kimberling, May 24 2019
From Gus Wiseman, May 21 2021: (Start)
The Heinz numbers of palindromic partitions are given by A265640. The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
Also the number of integer partitions of n with a part greater than or equal to n/2. This is equivalent to Clark Kimberling's final comment above. The Heinz numbers of these partitions are given by A344414. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(211) (311) (51) (61) (62)
(321) (421) (71)
(411) (511) (422)
(3111) (4111) (431)
(521)
(611)
(4211)
(5111)
(41111)
Also the number of integer partitions of n with at least n/2 parts. The Heinz numbers of these partitions are given by A344296. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (21) (22) (221) (222) (2221) (2222)
(11) (111) (31) (311) (321) (3211) (3221)
(211) (2111) (411) (4111) (3311)
(1111) (11111) (2211) (22111) (4211)
(3111) (31111) (5111)
(21111) (211111) (22211)
(111111) (1111111) (32111)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)

Examples

			The partitions for the first few values of n are as follows:
n: partitions .......................... number
1: 1 ................................... 1
2: 2 11 ................................ 2
3: 3 111 ............................... 2
4: 4 22 121 1111 ....................... 4
5: 5 131 212 11111 ..................... 4
6: 6 141 33 222 1221 11211 111111 ...... 7
7: 7 151 313 11311 232 21112 1111111 ... 7
From _Reinhard Zumkeller_, Jan 23 2010: (Start)
Partitions into 1,2,4,6,... for the first values of n:
1: 1 ....................................... 1
2: 2 11 .................................... 2
3: 21 111 .................................. 2
4: 4 22 211 1111 ........................... 4
5: 41 221 2111 11111 ....................... 4
6: 6 42 4211 222 2211 21111 111111.......... 7
7: 61 421 42111 2221 22111 211111 1111111 .. 7. (End)
		

Crossrefs

Cf. A172033, A004277. - Reinhard Zumkeller, Jan 23 2010
The bisections are both A000070.
The ordered version (palindromic compositions) is A016116.
The complement is counted by A233771 and A210249.
The case of palindromic prime signature is A242414.
Palindromic partitions are ranked by A265640, with complement A229153.
The case of palindromic plane trees is A319436.
The multiplicative version (palindromic factorizations) is A344417.
A000569 counts graphical partitions.
A027187 counts partitions of even length, ranked by A028260.
A035363 counts partitions into even parts, ranked by A066207.
A058696 counts partitions of even numbers, ranked by A300061.
A110618 counts partitions with length <= half sum, ranked by A344291.

Programs

  • Haskell
    a025065 = p (1:[2,4..]) where
       p [] _ = 0
       p _  0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 12 2011
    
  • Haskell
    import Data.List (group)
    a025065 = length . filter (<= 1) .
                       map (sum . map ((`mod` 2) . length) . group) . ps 1
       where ps x 0 = [[]]
             ps x y = [t:ts | t <- [x..y], ts <- ps t (y - t)]
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Mathematica
    Map[Length[Select[IntegerPartitions[#], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &]] &, Range[40]] (* Peter J. C. Moses, Jan 20 2014 *)
    n = 8; Select[IntegerPartitions[n], Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1 &] (* Peter J. C. Moses, Jan 20 2014 *)
    CoefficientList[Series[1/((1 - x) Product[1 - x^(2 n), {n, 1, 50}]), {x, 0, 60}], x] (* Clark Kimberling, Mar 14 2014 *)
  • PARI
    N=66; q='q+O('q^N); Vec( 1/((1-q)*eta(q^2)) ) \\ Joerg Arndt, Mar 11 2014

Formula

a(n) = A000070(A004526(n)). - Reinhard Zumkeller, Jan 23 2010
G.f.: 1/((1-q)*prod(n>=1, 1-q^(2*n))). [Joerg Arndt, Mar 11 2014]
a(2*k+2) = a(2*k) + A000041(k + 1). - David A. Corneth, May 29 2021
a(n) ~ exp(Pi*sqrt(n/3)) / (2*Pi*sqrt(n)). - Vaclav Kotesovec, Nov 16 2021

Extensions

Edited by N. J. A. Sloane, Dec 29 2007
Prepended a(0)=1, added more terms, Joerg Arndt, Mar 11 2014

A035363 Number of partitions of n into even parts.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 22, 0, 30, 0, 42, 0, 56, 0, 77, 0, 101, 0, 135, 0, 176, 0, 231, 0, 297, 0, 385, 0, 490, 0, 627, 0, 792, 0, 1002, 0, 1255, 0, 1575, 0, 1958, 0, 2436, 0, 3010, 0, 3718, 0, 4565, 0, 5604, 0, 6842, 0, 8349, 0, 10143, 0, 12310, 0
Offset: 0

Views

Author

Keywords

Comments

Convolved with A036469 = A000070. - Gary W. Adamson, Jun 09 2009
Note that these partitions are located in the head of the last section of the set of partitions of n (see A135010). - Omar E. Pol, Nov 20 2009
Number of symmetric unimodal compositions of n+2 where the maximal part appears twice, see example. Also number of symmetric unimodal compositions of n where the maximal part appears an even number of times. - Joerg Arndt, Jun 11 2013
Number of partitions of n having parts of even multiplicity. These are the conjugates of the partitions from the definition. Example: a(8)=5 because we have [4,4],[3,3,1,1],[2,2,2,2],[2,2,1,1,1,1], and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Jan 27 2016
From Gus Wiseman, May 22 2021: (Start)
The Heinz numbers of the conjugate partitions described in Emeric Deutsch's comment above are given by A000290.
For n > 1, also the number of integer partitions of n-1 whose only odd part is the smallest. The Heinz numbers of these partitions are given by A341446. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns shown as dots, A..D = 10..13) are:
1 . 3 . 5 . 7 . 9 . B . D
21 41 43 63 65 85
221 61 81 83 A3
421 441 A1 C1
2221 621 443 643
4221 641 661
22221 821 841
4421 A21
6221 4441
42221 6421
222221 8221
44221
62221
422221
2222221
Also the number of integer partitions of n whose greatest part is the sum of all the other parts. The Heinz numbers of these partitions are given by A344415. For example, the a(2) = 1 through a(12) = 11 partitions (empty columns not shown) are:
(11) (22) (33) (44) (55) (66)
(211) (321) (422) (532) (633)
(3111) (431) (541) (642)
(4211) (5221) (651)
(41111) (5311) (6222)
(52111) (6321)
(511111) (6411)
(62211)
(63111)
(621111)
(6111111)
Also the number of integer partitions of n of length n/2. The Heinz numbers of these partitions are given by A340387. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns not shown) are:
(2) (22) (222) (2222) (22222) (222222) (2222222)
(31) (321) (3221) (32221) (322221) (3222221)
(411) (3311) (33211) (332211) (3322211)
(4211) (42211) (333111) (3332111)
(5111) (43111) (422211) (4222211)
(52111) (432111) (4322111)
(61111) (441111) (4331111)
(522111) (4421111)
(531111) (5222111)
(621111) (5321111)
(711111) (5411111)
(6221111)
(6311111)
(7211111)
(8111111)
(End)

Examples

			From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(12)=11 symmetric unimodal compositions of 12+2=14 where the maximal part appears twice:
01:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
02:  [ 1 1 1 1 3 3 1 1 1 1 ]
03:  [ 1 1 1 4 4 1 1 1 ]
04:  [ 1 1 2 3 3 2 1 1 ]
05:  [ 1 1 5 5 1 1 ]
06:  [ 1 2 4 4 2 1 ]
07:  [ 1 6 6 1 ]
08:  [ 2 2 3 3 2 2 ]
09:  [ 2 5 5 2 ]
10:  [ 3 4 4 3 ]
11:  [ 7 7 ]
There are a(14)=15 symmetric unimodal compositions of 14 where the maximal part appears an even number of times:
01:  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
03:  [ 1 1 1 1 3 3 1 1 1 1 ]
04:  [ 1 1 1 2 2 2 2 1 1 1 ]
05:  [ 1 1 1 4 4 1 1 1 ]
06:  [ 1 1 2 3 3 2 1 1 ]
07:  [ 1 1 5 5 1 1 ]
08:  [ 1 2 2 2 2 2 2 1 ]
09:  [ 1 2 4 4 2 1 ]
10:  [ 1 3 3 3 3 1 ]
11:  [ 1 6 6 1 ]
12:  [ 2 2 3 3 2 2 ]
13:  [ 2 5 5 2 ]
14:  [ 3 4 4 3 ]
15:  [ 7 7 ]
(End)
a(8)=5 because we  have [8], [6,2], [4,4], [4,2,2], and [2,2,2,2]. - _Emeric Deutsch_, Jan 27 2016
From _Gus Wiseman_, May 22 2021: (Start)
The a(0) = 1 through a(12) = 11 partitions into even parts are the following (empty columns shown as dots, A = 10, C = 12). The Heinz numbers of these partitions are given by A066207.
  ()  .  (2)  .  (4)   .  (6)    .  (8)     .  (A)      .  (C)
                 (22)     (42)      (44)       (64)        (66)
                          (222)     (62)       (82)        (84)
                                    (422)      (442)       (A2)
                                    (2222)     (622)       (444)
                                               (4222)      (642)
                                               (22222)     (822)
                                                           (4422)
                                                           (6222)
                                                           (42222)
                                                           (222222)
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.

Crossrefs

Bisection (even part) gives the partition numbers A000041.
Column k=0 of A103919, A264398.
Note: A-numbers of ranking sequences are in parentheses below.
The version for odd instead of even parts is A000009 (A066208).
The version for parts divisible by 3 instead of 2 is A035377.
The strict case is A035457.
The Heinz numbers of these partitions are given by A066207.
The ordered version (compositions) is A077957 prepended by (1,0).
This is column k = 2 of A168021.
The multiplicative version (factorizations) is A340785.
A000569 counts graphical partitions (A320922).
A004526 counts partitions of length 2 (A001358).
A025065 counts palindromic partitions (A265640).
A027187 counts partitions with even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum (A340784).
A340601 counts partitions of even rank (A340602).
The following count partitions of even length:
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Maple
    ZL:= [S, {C = Cycle(B), S = Set(C), E = Set(B), B = Prod(Z,Z)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..69); # Zerinvary Lajos, Mar 26 2008
    g := 1/mul(1-x^(2*k), k = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0 .. 78); # Emeric Deutsch, Jan 27 2016
    # Using the function EULER from Transforms (see link at the bottom of the page).
    [1,op(EULER([0,1,seq(irem(n,2),n=0..66)]))]; # Peter Luschny, Aug 19 2020
    # next Maple program:
    a:= n-> `if`(n::odd, 0, combinat[numbpart](n/2)):
    seq(a(n), n=0..84);  # Alois P. Heinz, Jun 22 2021
  • Mathematica
    nmax = 50; s = Range[2, nmax, 2];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • Python
    from sympy import npartitions
    def A035363(n): return 0 if n&1 else npartitions(n>>1) # Chai Wah Wu, Sep 23 2023

Formula

G.f.: Product_{k even} 1/(1 - x^k).
Convolution with the number of partitions into distinct parts (A000009, which is also number of partitions into odd parts) gives the number of partitions (A000041). - Franklin T. Adams-Watters, Jan 06 2006
If n is even then a(n)=A000041(n/2) otherwise a(n)=0. - Omar E. Pol, Nov 20 2009
G.f.: 1 + x^2*(1 - G(0))/(1-x^2) where G(k) = 1 - 1/(1-x^(2*k+2))/(1-x^2/(x^2-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
a(n) = A096441(n) - A000009(n), n >= 1. - Omar E. Pol, Aug 16 2013
G.f.: exp(Sum_{k>=1} x^(2*k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018

A320924 Heinz numbers of multigraphical partitions.

Original entry on oeis.org

1, 4, 9, 12, 16, 25, 27, 30, 36, 40, 48, 49, 63, 64, 70, 75, 81, 84, 90, 100, 108, 112, 120, 121, 144, 147, 154, 160, 165, 169, 175, 189, 192, 196, 198, 210, 220, 225, 243, 250, 252, 256, 264, 270, 273, 280, 286, 289, 300, 324, 325, 336, 343, 351, 352, 360
Offset: 1

Views

Author

Gus Wiseman, Oct 24 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is multigraphical if it comprises the multiset of vertex-degrees of some multigraph.
Also Heinz numbers of integer partitions of even numbers whose greatest part is less than or equal to half the sum of parts, i.e., numbers n whose sum of prime indices A056239(n) is even and at least twice the greatest prime index A061395(n). - Gus Wiseman, May 23 2021

Examples

			The sequence of all multigraphical partitions begins: (), (11), (22), (211), (1111), (33), (222), (321), (2211), (3111), (21111), (44), (422), (111111), (431), (332), (2222), (4211), (3221), (3311), (22211), (41111), (32111), (55), (221111).
From _Gus Wiseman_, May 23 2021: (Start)
The sequence of terms together with their prime indices and a multigraph realizing each begins:
    1:      () | {}
    4:    (11) | {{1,2}}
    9:    (22) | {{1,2},{1,2}}
   12:   (112) | {{1,3},{2,3}}
   16:  (1111) | {{1,2},{3,4}}
   25:    (33) | {{1,2},{1,2},{1,2}}
   27:   (222) | {{1,2},{1,3},{2,3}}
   30:   (123) | {{1,3},{2,3},{2,3}}
   36:  (1122) | {{1,2},{3,4},{3,4}}
   40:  (1113) | {{1,4},{2,4},{3,4}}
   48: (11112) | {{1,2},{3,5},{4,5}}
   49:    (44) | {{1,2},{1,2},{1,2},{1,2}}
   63:   (224) | {{1,3},{1,3},{2,3},{2,3}}
(End)
		

Crossrefs

These partitions are counted by A209816.
The case with odd weights is A322109.
The conjugate case of equality is A340387.
The conjugate version with odd weights allowed is A344291.
The conjugate opposite version is A344292.
The opposite version with odd weights allowed is A344296.
The conjugate version is A344413.
The conjugate opposite version with odd weights allowed is A344414.
The case of equality is A344415.
The opposite version is A344416.
A000070 counts non-multigraphical partitions.
A025065 counts palindromic partitions.
A035363 counts partitions into even parts.
A056239 adds up prime indices, row sums of A112798.
A110618 counts partitions that are the vertex-degrees of some set multipartition with no singletons.
A334201 adds up all prime indices except the greatest.

Programs

  • Mathematica
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    Select[Range[1000],prptns[Flatten[MapIndexed[Table[#2,{#1}]&,If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]]]!={}&]

Formula

Members m of A300061 such that A061395(m) <= A056239(m)/2. - Gus Wiseman, May 23 2021

A004250 Number of partitions of n into 3 or more parts.

Original entry on oeis.org

0, 0, 1, 2, 4, 7, 11, 17, 25, 36, 50, 70, 94, 127, 168, 222, 288, 375, 480, 616, 781, 990, 1243, 1562, 1945, 2422, 2996, 3703, 4550, 5588, 6826, 8332, 10126, 12292, 14865, 17958, 21618, 25995, 31165, 37317, 44562
Offset: 1

Views

Author

Keywords

Comments

Number of (n+1)-vertex spider graphs: trees with n+1 vertices and exactly 1 vertex of degree at least 3 (i.e. branching vertex). There is a trivial bijection with the objects described in the definition. - Emeric Deutsch, Feb 22 2014
Also the number of graphical partitions of 2n into n parts. - Gus Wiseman, Jan 08 2021

Examples

			a(6)=7 because there are three partitions of n=6 with i=3 parts: [4, 1, 1], [3, 2, 1], [2, 2, 2] and two partitions with i=4 parts: [3, 1, 1, 1], [2, 2, 1, 1] and one partition with i=5 parts: [2, 1, 1, 1, 1] and one partition with i=6 parts: [1, 1, 1, 1, 1, 1].
From _Gus Wiseman_, Jan 18 2021: (Start)
The a(3) = 1 through a(7) = 11 graphical partitions of 2n into n parts:
  (222)  (2222)  (22222)  (222222)  (2222222)
         (3221)  (32221)  (322221)  (3222221)
                 (33211)  (332211)  (3322211)
                 (42211)  (333111)  (3332111)
                          (422211)  (4222211)
                          (432111)  (4322111)
                          (522111)  (4331111)
                                    (4421111)
                                    (5222111)
                                    (5321111)
                                    (6221111)
(End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P. R. Stein, On the number of graphical partitions, pp. 671-684 of Proc. 9th S-E Conf. Combinatorics, Graph Theory, Computing, Congr. Numer. 21 (1978).

Crossrefs

Rightmost column of A259873.
Central column of A339659.
A000041 counts partitions of 2n into n parts, ranked by A340387.
A000569 counts graphical partitions, ranked by A320922.
A008284 counts partitions by sum and length.
A027187 counts partitions of even length.
A309356 ranks simple covering graphs.
The following count vertex-degree partitions and give their Heinz numbers:
- A209816 counts multigraphical partitions (A320924).
- A320921 counts connected graphical partitions (A320923).
- A339617 counts non-graphical partitions of 2n (A339618).
- A339656 counts loop-graphical partitions (A339658).
Partial sums of A117995.

Programs

  • Maple
    with(combinat);
    for i from 1 to 15 do pik(i,3) od;
    pik:= proc(n::integer, k::integer)
    # Thomas Wieder, Jan 30 2007
    local i, Liste, Result;
    if k > n or n < 0 or k < 1 then
    return fail
    end if;
    Result := 0;
    for i from k to n do
    Liste:= PartitionList(n,i);
    #print(Liste);
    Result := Result + nops(Liste);
    end do;
    return Result;
    end proc;
    PartitionList := proc (n, k)
    # Authors: Herbert S. Wilf and Joanna Nordlicht. Source: Lecture Notes
    # "East Side West Side,..." University of Pennsylvania, USA, 2002.
    # Available at: http://www.cis.upenn.edu/~wilf/lecnotes.html
    # Calculates the partition of n into k parts.
    # E.g. PartitionList(5,2) --> [[4, 1], [3, 2]].
    local East, West;
    if n < 1 or k < 1 or n < k then
    RETURN([])
    elif n = 1 then
    RETURN([[1]])
    else if n < 2 or k < 2 or n < k then
    West := []
    else
    West := map(proc (x) options operator, arrow;
    [op(x), 1] end proc,PartitionList(n-1,k-1)) end if;
    if k <= n-k then
    East := map(proc (y) options operator, arrow;
    map(proc (x) options operator, arrow; x+1 end proc,y) end proc,PartitionList(n-k,k))
    else East := [] end if;
    RETURN([op(West), op(East)])
    end if;
    end proc;
    #  Thomas Wieder, Feb 01 2007
    ZL :=[S, {S = Set(Cycle(Z),3 <= card)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=1..41); # Zerinvary Lajos, Mar 25 2008
    B:=[S,{S = Set(Sequence(Z,1 <= card),card >=3)},unlabelled]: seq(combstruct[count](B, size=n), n=1..41); # Zerinvary Lajos, Mar 21 2009
  • Mathematica
    Length /@ Table[Select[Partitions[n], Length[#] > 2 &], {n, 20}] (* Eric W. Weisstein, May 16 2007 *)
    Table[Count[Length /@ Partitions[n], ?(# > 2 &)], {n, 20}] (* _Eric W. Weisstein, May 16 2017 *)
    Table[PartitionsP[n] - Floor[n/2] - 1, {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
    Length /@ Table[IntegerPartitions[n, {3, n}], {n, 20}] (* Eric W. Weisstein, May 16 2017 *)
  • PARI
    a(n) = numbpart(n) - (n+2)\2; /* Joerg Arndt, Apr 03 2013 */

Formula

G.f.: Sum_{n>=0} (q^n / Product_{k=1..n+3} (1 - q^k)). - N. J. A. Sloane
a(n) = A000041(n) - floor((n+2)/2) = A000041(n)-A004526(n+2) = A058984(n)-1. - Vladeta Jovovic, Jun 18 2003
Let P(n,i) denote the number of partitions of n into i parts. Then a(n) = Sum_{i=3..n} P(n,i). - Thomas Wieder, Feb 01 2007
a(n) = A259873(n,n). - Gus Wiseman, Jan 08 2021

Extensions

Definition corrected by Thomas Wieder, Feb 01 2007 and by Eric W. Weisstein, May 16 2007

A086543 Number of partitions of n with at least one odd part.

Original entry on oeis.org

0, 1, 1, 3, 3, 7, 8, 15, 17, 30, 35, 56, 66, 101, 120, 176, 209, 297, 355, 490, 585, 792, 946, 1255, 1498, 1958, 2335, 3010, 3583, 4565, 5428, 6842, 8118, 10143, 12013, 14883, 17592, 21637, 25525, 31185, 36711, 44583, 52382, 63261, 74173, 89134, 104303, 124754, 145698, 173525, 202268
Offset: 0

Views

Author

Vladeta Jovovic, Sep 10 2003

Keywords

Comments

From Gus Wiseman, Oct 12 2023: (Start)
Also the number of integer partitions of n whose greatest part is not n/2, ranked by A366319. The a(1) = 1 through a(7) = 15 partitions are:
(1) (2) (3) (4) (5) (6) (7)
(21) (31) (32) (42) (43)
(111) (1111) (41) (51) (52)
(221) (222) (61)
(311) (411) (322)
(2111) (2211) (331)
(11111) (21111) (421)
(111111) (511)
(2221)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
Compare to the a(1) = 1 through a(7) = 15 partitions with at least one odd part, ranked by A366322:
(1) (11) (3) (31) (5) (33) (7)
(21) (211) (32) (51) (43)
(111) (1111) (41) (321) (52)
(221) (411) (61)
(311) (2211) (322)
(2111) (3111) (331)
(11111) (21111) (421)
(111111) (511)
(2221)
(3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
(End)

Examples

			a(4)=3 because we have [3,1],[2,1,1] and [1,1,1] ([4] and [2,2] do not qualify).
		

Crossrefs

The complement is counted by A035363, ranks A344415.
These partitions have ranks A366322.
A025065 counts partitions with sum <= twice length, ranks A344296.
A110618 counts partitions with sum >= twice maximum, ranks A344291.

Programs

  • Maple
    g:=sum(x^(2*k-1)/product(1-x^j,j=1..2*k-1)/product(1-x^(2*j),j=k..70),k=1..70): gser:=series(g,x=0,50): seq(coeff(gser,x,n),n=0..45); # Emeric Deutsch, Mar 30 2006
  • Mathematica
    nn=50;CoefficientList[Series[Sum[x^(2k-1)/Product[1-x^j,{j,1,2k-1}] /Product[(1-x^(2j)),{j,k,nn}],{k,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 28 2013 *)
    Table[Length[Select[IntegerPartitions[n],Max[#]!=n/2&]],{n,0,30}] (* Gus Wiseman, Oct 12 2023 *)
  • PARI
    x='x+O('x^66); concat([0], Vec(1/eta(x)-1/eta(x^2)) ) \\ Joerg Arndt, May 04 2013

Formula

A000041(n) if n is odd; otherwise, A000041(n) - A000041(n/2).
G.f.: Sum_{k>=1} x^(2k-1)/((Product_{j=1..2k-1} (1-x^j))*(Product_{j>=k} (1-x^(2j)))). - Emeric Deutsch, Mar 30 2006
G.f.: 1/E(x) - 1/E(x^2) where E(x) = prod(n>=1, 1-x^n ); see Pari code. - Joerg Arndt, May 04 2013

A266755 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120, 114, 127, 120, 133, 127, 140, 133, 147, 140, 154, 147, 161, 154, 169
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

This is the same as A005044 but without the three leading zeros. There are so many situations where one wants this sequence rather than A005044 that it seems appropriate for it to have its own entry.
But see A005044 (still the main entry) for numerous applications and references.
Also, Molien series for invariants of finite Coxeter group D_3.
The Molien series for the finite Coxeter group of type D_k (k >= 3) has g.f. = 1/Product_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.
Also, Molien series for invariants of finite Coxeter group A_3. The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i). Note that this is the root system A_k not the alternating group Alt_k.
a(n) is the number of partitions of n into parts 2, 3, and 4. - Joerg Arndt, Apr 16 2017
From Gus Wiseman, May 23 2021: (Start)
Also the number of integer partitions of n into at most n/2 parts, none greater than 3. The case of any maximum is A110618. The case of any length is A001399. The Heinz numbers of these partitions are given by A344293.
For example, the a(2) = 1 through a(13) = 5 partitions are:
2 3 22 32 33 322 332 333 3322 3332 3333 33322
31 222 331 2222 3222 3331 32222 33222 33331
321 3221 3321 22222 33221 33321 322222
3311 32221 33311 222222 332221
33211 322221 333211
332211
333111
(End)

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 4*x^8 + ... - _Michael Somos_, Jan 29 2022
		

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.
A variant of A005044.
Cf. A001400 (partial sums).
Cf. A308065.
Number of partitions of n whose Heinz number is in A344293.
A001399 counts partitions with all parts <= 3, ranked by A051037.
A025065 counts partitions of n with >= n/2 parts, ranked by A344296.
A035363 counts partitions of n with n/2 parts, ranked by A340387.
A110618 counts partitions of n into at most n/2 parts, ranked by A344291.

Programs

  • Magma
    I:=[1,0,1,1,2,1,3,2,4]; [n le 9 select I[n] else Self(n-2)+ Self(n-3)+Self(n-4)-Self(n-5)-Self(n-6)-Self(n-7)+Self(n-9): n in [1..100]]; // Vincenzo Librandi, Jan 11 2016
    
  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)), {x, 0, 100}], x] (* JungHwan Min, Jan 10 2016 *)
    LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1}, {1,0,1,1,2,1,3,2,4}, 100] (* Vincenzo Librandi, Jan 11 2016 *)
    Table[Length[Select[IntegerPartitions[n],Length[#]<=n/2&&Max@@#<=3&]],{n,0,30}] (* Gus Wiseman, May 23 2021 *)
    a[ n_] := Round[(n + 3*(2 - Mod[n,2]))^2/48]; (* Michael Somos, Jan 29 2022 *)
  • PARI
    Vec(1/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^100)) \\ Michel Marcus, Jan 11 2016
    
  • PARI
    {a(n) = round((n + 3*(2-n%2))^2/48)}; /* Michael Somos, Jan 29 2022 */
    
  • Sage
    (1/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Jun 13 2019

Formula

a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8. - Vincenzo Librandi, Jan 11 2016
a(n) = a(-9-n) for all n in Z. a(n) = a(n+3) for all n in 2Z. - Michael Somos, Jan 29 2022
E.g.f.: exp(-x)*(81 - 18*x + exp(2*x)*(107 + 60*x + 6*x^2) + 64*exp(x/2)*cos(sqrt(3)*x/2) + 36*exp(x)*(cos(x) - sin(x)))/288. - Stefano Spezia, Mar 05 2023
For n >= 3, if n is even, a(n) = a(n-3) + floor(n/4) + 1, otherwise a(n) = a(n-3). - Robert FERREOL, Feb 05 2024
a(n) = floor((n^2+9*n+(3*n+9)*(-1)^n+39)/48). - Hoang Xuan Thanh, Jun 03 2025

A344296 Numbers with at least as many prime factors (counted with multiplicity) as half their sum of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 256, 264, 270, 280, 288, 300, 320, 324, 336, 352
Offset: 1

Views

Author

Gus Wiseman, May 16 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of certain partitions counted by A025065, but different from palindromic partitions, which have Heinz numbers A265640.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            30: {1,2,3}
      2: {1}           32: {1,1,1,1,1}
      3: {2}           36: {1,1,2,2}
      4: {1,1}         40: {1,1,1,3}
      6: {1,2}         48: {1,1,1,1,2}
      8: {1,1,1}       54: {1,2,2,2}
      9: {2,2}         56: {1,1,1,4}
     10: {1,3}         60: {1,1,2,3}
     12: {1,1,2}       64: {1,1,1,1,1,1}
     16: {1,1,1,1}     72: {1,1,1,2,2}
     18: {1,2,2}       80: {1,1,1,1,3}
     20: {1,1,3}       81: {2,2,2,2}
     24: {1,1,1,2}     84: {1,1,2,4}
     27: {2,2,2}       88: {1,1,1,5}
     28: {1,1,4}       90: {1,2,2,3}
		

Crossrefs

The case with difference at least 1 is A322136.
The case of equality is A340387, counted by A000041 or A035363.
The opposite version is A344291, counted by A110618.
The conjugate version is A344414, with even-weight case A344416.
A025065 counts palindromic partitions, ranked by A265640.
A056239 adds up prime indices, row sums of A112798.
A300061 lists numbers whose sum of prime indices is even.

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]>=Total[Cases[FactorInteger[#],{p_,k_}:>k*PrimePi[p]]]/2&]

Formula

A056239(a(n)) <= 2*A001222(a(n)).
a(n) = A322136(n)/4.

A347044 Greatest divisor of n with half (rounded up) as many prime factors (counting multiplicity) as n.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 6, 13, 7, 5, 4, 17, 9, 19, 10, 7, 11, 23, 6, 5, 13, 9, 14, 29, 15, 31, 8, 11, 17, 7, 9, 37, 19, 13, 10, 41, 21, 43, 22, 15, 23, 47, 12, 7, 25, 17, 26, 53, 9, 11, 14, 19, 29, 59, 15, 61, 31, 21, 8, 13, 33, 67, 34, 23, 35, 71
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2021

Keywords

Comments

Appears to contain each positive integer at least once, but only a finite number of times.

Examples

			The divisors of 123456 with half bigomega are: 16, 24, 5144, 7716, so a(123456) = 7716.
		

Crossrefs

The greatest divisor without the condition is A006530 (smallest: A020639).
Divisors of this type are counted by A096825 (exact: A345957).
The case of powers of 2 is A163403.
The smallest divisor of this type is given by A347043 (exact: A347045).
The exact version is A347046.
A000005 counts divisors.
A001221 counts distinct prime factors.
A001222 counts all prime factors (also called bigomega).
A038548 counts inferior (or superior) divisors (strict: A056924).
A056239 adds up prime indices, row sums of A112798.
A207375 lists central divisors (min: A033676, max: A033677).
A340387 lists numbers whose sum of prime indices is twice bigomega.
A340609 lists numbers whose maximum prime index divides bigomega.
A340610 lists numbers whose maximum prime index is divisible by bigomega.
A347042 counts divisors d|n such that bigomega(d) divides bigomega(n).

Programs

  • Mathematica
    Table[Max[Select[Divisors[n],PrimeOmega[#]==Ceiling[PrimeOmega[n]/2]&]],{n,100}]
    a[n_] := Module[{p = Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]], np}, np = Length[p]; Times @@ p[[Floor[np/2] + 1;; np]]]; Array[a, 100] (* Amiram Eldar, Nov 02 2024 *)
  • Python
    from sympy import divisors, factorint
    def a(n):
        npf = len(factorint(n, multiple=True))
        for d in divisors(n)[::-1]:
            if len(factorint(d, multiple=True)) == (npf+1)//2: return d
        return 1
    print([a(n) for n in range(1, 72)]) # Michael S. Branicky, Aug 18 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A347044(n):
        fs = factorint(n,multiple=True)
        l = len(fs)
        return prod(fs[l//2:]) # Chai Wah Wu, Aug 20 2021

Formula

a(n) = Product_{k=floor(A001222(n)/2)+1..A001222(n)} A027746(n,k). - Amiram Eldar, Nov 02 2024

A347043 Smallest divisor of n with half (rounded up) as many prime factors (counting multiplicity) as n.

Original entry on oeis.org

1, 2, 3, 2, 5, 2, 7, 4, 3, 2, 11, 4, 13, 2, 3, 4, 17, 6, 19, 4, 3, 2, 23, 4, 5, 2, 9, 4, 29, 6, 31, 8, 3, 2, 5, 4, 37, 2, 3, 4, 41, 6, 43, 4, 9, 2, 47, 8, 7, 10, 3, 4, 53, 6, 5, 4, 3, 2, 59, 4, 61, 2, 9, 8, 5, 6, 67, 4, 3, 10, 71, 8, 73, 2, 15, 4, 7, 6, 79, 8
Offset: 1

Views

Author

Gus Wiseman, Aug 15 2021

Keywords

Comments

Appears to contain every positive integer at least once.
This is correct. For any integer m, let p be any prime > m. Then a(m*p^A001222(m)) = m. - Sebastian Karlsson, Oct 11 2022

Examples

			The divisors of 123456 with half bigomega are: 16, 24, 5144, 7716, so a(123456) = 16.
		

Crossrefs

Positions of 2's are A001747.
Positions of odd terms are A005408.
Positions of even terms are A005843.
The case of powers of 2 is A016116.
The smallest divisor without the condition is A020639 (greatest: A006530).
These divisors are counted by A096825 (exact: A345957).
The greatest of these divisors is A347044 (exact: A347046).
The exact version is A347045.
A000005 counts divisors.
A001221 counts distinct prime factors.
A001222 counts all prime factors (also called bigomega).
A056239 adds up prime indices, row sums of A112798.
A207375 lists central divisors (min: A033676, max: A033677).
A340387 lists numbers whose sum of prime indices is twice bigomega.
A340609 lists numbers whose maximum prime index divides bigomega.
A340610 lists numbers whose maximum prime index is divisible by bigomega.
A347042 counts divisors d|n such that bigomega(d) divides bigomega(n).

Programs

  • Mathematica
    Table[Min[Select[Divisors[n],PrimeOmega[#]==Ceiling[PrimeOmega[n]/2]&]],{n,100}]
    a[n_] := Module[{p = Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]]}, Times @@ p[[1 ;; Ceiling[Length[p]/2]]]]; Array[a, 100] (* Amiram Eldar, Nov 02 2024 *)
  • PARI
    a(n) = my(bn=ceil(bigomega(n)/2)); fordiv(n, d, if (bigomega(d)==bn, return (d))); \\ Michel Marcus, Aug 18 2021
    
  • Python
    from sympy import divisors, factorint
    def a(n):
        npf = len(factorint(n, multiple=True))
        for d in divisors(n):
            if len(factorint(d, multiple=True)) == (npf+1)//2: return d
        return 1
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Aug 18 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A347043(n):
        fs = factorint(n,multiple=True)
        l = len(fs)
        return prod(fs[:(l+1)//2]) # Chai Wah Wu, Aug 20 2021

Formula

a(n) = Product_{k=1..ceiling(A001222(n)/2)} A027746(n,k). - Amiram Eldar, Nov 02 2024

A344415 Numbers whose greatest prime index is half their sum of prime indices.

Original entry on oeis.org

4, 9, 12, 25, 30, 40, 49, 63, 70, 84, 112, 121, 154, 165, 169, 198, 220, 264, 273, 286, 289, 325, 351, 352, 361, 364, 390, 442, 468, 520, 529, 561, 595, 624, 646, 714, 741, 748, 765, 832, 841, 850, 874, 918, 931, 952, 961, 988, 1020, 1045, 1173, 1197, 1224
Offset: 1

Views

Author

Gus Wiseman, May 19 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
       4: {1,1}           198: {1,2,2,5}
       9: {2,2}           220: {1,1,3,5}
      12: {1,1,2}         264: {1,1,1,2,5}
      25: {3,3}           273: {2,4,6}
      30: {1,2,3}         286: {1,5,6}
      40: {1,1,1,3}       289: {7,7}
      49: {4,4}           325: {3,3,6}
      63: {2,2,4}         351: {2,2,2,6}
      70: {1,3,4}         352: {1,1,1,1,1,5}
      84: {1,1,2,4}       361: {8,8}
     112: {1,1,1,1,4}     364: {1,1,4,6}
     121: {5,5}           390: {1,2,3,6}
     154: {1,4,5}         442: {1,6,7}
     165: {2,3,5}         468: {1,1,2,2,6}
     169: {6,6}           520: {1,1,1,3,6}
		

Crossrefs

The partitions with these Heinz numbers are counted by A035363.
The conjugate version is A340387.
This sequence is the case of equality in A344414 and A344416.
A001222 counts prime factors with multiplicity.
A025065 counts palindromic partitions, ranked by A265640.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A058696 counts partitions of even numbers, ranked by A300061.
A301987 lists numbers whose sum of prime indices equals their product.
A322109 ranks partitions of n with no part > n/2, counted by A110618.
A334201 adds up all prime indices except the greatest.
A344291 lists numbers m with A001222(m) <= A056239(m)/2, counted by A110618.
A344296 lists numbers m with A001222(m) >= A056239(m)/2, counted by A025065.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max[primeMS[#]]==Total[primeMS[#]]/2&]

Formula

A061395(a(n)) = A056239(a(n))/2.
Showing 1-10 of 33 results. Next