A180056
The number of permutations of {1,2,...,2n} with n ascents.
Original entry on oeis.org
1, 1, 11, 302, 15619, 1310354, 162512286, 27971176092, 6382798925475, 1865385657780650, 679562217794156938, 301958232385734088196, 160755658074834738495566, 101019988341178648636047412, 73990373947612503295166622044, 62481596875767023932367207962680
Offset: 0
-
A180056 :=
proc(n) local j;
add((-1)^j*binomial(2*n+1,j)*(n-j+1)^(2*n),j=0..n)
end:
# A180056_list(m) returns [a_0,a_1,..,a_m]
A180056_list :=
proc(m) local A, R, M, n, k;
R := 1; M := m + 1;
A := array([seq(1, n = 1..M)]);
for n from 2 to M do
for k from 2 to M do
if n = k then R := R, A[k] fi;
A[k] := n*A[k-1] + k*A[k]
od
od;
R
end:
-
A025585[n_] := Sum[(-1)^j*(n-j)^(2*n-1)*Binomial[2*n, j], {j, 0, n}]; a[0] = 1; a[n_] := A025585[n+1]/(2*n+2); Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Jun 28 2013, after Gary Detlefs *)
<< Combinatorica`; Table[Combinatorica`Eulerian[2 n, n], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 15 2016 *)
-
def A180056_list(m):
ret = [1]
M = m + 1
A = [1 for i in range(0, M)]
for n in range(2, M):
for k in range(2, M):
if n == k:
ret.append(A[k])
A[k] = n*A[k-1] + k*A[k]
return ret
A303287
Number of permutations p of [n] such that the sequence of ascents and descents of p or of p0 (if n is even) forms a Dyck path.
Original entry on oeis.org
1, 1, 1, 2, 8, 22, 172, 604, 7296, 31238, 518324, 2620708, 55717312, 325024572, 8460090160, 55942352184, 1726791794432, 12765597850950, 456440969661508, 3730771315561300, 151770739970889792, 1359124435588313876, 62022635037246022000, 603916464771468176392
Offset: 0
a(0) = 1: the empty permutation.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 2: 132, 231.
a(4) = 8: 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412.
a(5) = 22: 12543, 13254, 13542, 14253, 14352, 14532, 15243, 15342, 23154, 23541, 24153, 24351, 24531, 25143, 25341, 34152, 34251, 34521, 35142, 35241, 45132, 45231.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t>0, add(b(u-j, o+j-1, t-1), j=1..u), 0)+
`if`(o+u>t, add(b(u+j-1, o-j, t+1), j=1..o), 0))
end:
a:= n-> b(n, 0, 1):
seq(a(n), n=0..25);
-
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t > 0, Sum[b[u - j, o + j - 1, t - 1], {j, 1, u}], 0] + If[o + u > t, Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}], 0]];
a[n_] := b[n, 0, 1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 25 2018, translated from Maple *)
A316728
Number T(n,k) of permutations of {0,1,...,2n} with first element k whose sequence of ascents and descents forms a Dyck path; triangle T(n,k), n>=0, 0<=k<=2n, read by rows.
Original entry on oeis.org
1, 1, 1, 0, 8, 7, 5, 2, 0, 172, 150, 121, 87, 52, 22, 0, 7296, 6440, 5464, 4411, 3337, 2306, 1380, 604, 0, 518324, 463578, 405024, 344260, 283073, 223333, 166856, 115250, 69772, 31238, 0, 55717312, 50416894, 44928220, 39348036, 33777456, 28318137, 23068057, 18117190, 13543456, 9409366, 5759740, 2620708, 0
Offset: 0
T(2,0) = 8: 01432, 02143, 02431, 03142, 03241, 03421, 04132, 04231.
T(2,1) = 7: 12043, 12430, 13042, 13240, 13420, 14032, 14230.
T(2,2) = 5: 23041, 23140, 23410, 24031, 24130.
T(2,3) = 2: 34021, 34120.
T(2,4) = 0.
Triangle T(n,k) begins:
1;
1, 1, 0;
8, 7, 5, 2, 0;
172, 150, 121, 87, 52, 22, 0;
7296, 6440, 5464, 4411, 3337, 2306, 1380, 604, 0;
518324, 463578, 405024, 344260, 283073, 223333, 166856, 115250, 69772, 31238, 0;
Row sums and T(n+1,2n+1) give
A177042.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t>0, add(b(u-j, o+j-1, t-1), j=1..u), 0)+
`if`(o+u>t, add(b(u+j-1, o-j, t+1), j=1..o), 0))
end:
T:= (n, k)-> b(k, 2*n-k, 0):
seq(seq(T(n, k), k=0..2*n), n=0..8);
-
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1,
If[t > 0, Sum[b[u - j, o + j - 1, t - 1], {j, 1, u}], 0] +
If[o + u > t, Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}], 0]];
T[n_, k_] := b[k, 2n - k, 0];
Table[Table[T[n, k], {k, 0, 2n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 27 2021, after Alois P. Heinz *)
A303284
Number of permutations p of [n] such that the sequence of ascents and descents of 0p or of 0p0 (if n is odd) forms a Dyck path.
Original entry on oeis.org
1, 1, 1, 4, 8, 60, 172, 1974, 7296, 114972, 518324, 10490392, 55717312, 1384890104, 8460090160, 250150900354, 1726791794432, 59317740001132, 456440969661508, 17886770092245360, 151770739970889792, 6687689652133397064, 62022635037246022000, 3037468107154650475868
Offset: 0
a(0) = 1: the empty permutation.
a(1) = 1: 1.
a(2) = 1: 21.
a(3) = 4: 132, 213, 231, 312.
a(4) = 8: 1432, 2143, 2431, 3142, 3241, 3421, 4132, 4231.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t>0, add(b(u-j, o+j-1, t-1), j=1..u), 0)+
`if`(o+u>t, add(b(u+j-1, o-j, t+1), j=1..o), 0))
end:
a:= n-> b(0, n, 0):
seq(a(n), n=0..25);
-
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t > 0, Sum[b[u - j, o + j - 1, t - 1], {j, 1, u}], 0] + If[o + u > t, Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}], 0]];
a[n_] := b[0, n, 0];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 25 2018, translated from Maple *)
-
b(u, o, t) = if(u+o==0, 1, if(t > 0, sum(j=1, u, b(u-j, o+j-1, t-1)), 0) + if(o+u > t, sum(j=1, o, b(u+j-1, o-j, t+1)), 0))
a(n) = b(0, n, 0) \\ Felix Fröhlich, May 25 2018, adapted from Mathematica
A321280
Number T(n,k) of permutations p of [n] with exactly k descents such that the up-down signature of p has nonnegative partial sums; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 8, 1, 22, 22, 1, 52, 172, 1, 114, 856, 604, 1, 240, 3488, 7296, 1, 494, 12746, 54746, 31238, 1, 1004, 43628, 330068, 518324, 1, 2026, 143244, 1756878, 5300418, 2620708, 1, 4072, 457536, 8641800, 43235304, 55717312, 1, 8166, 1434318, 40298572, 309074508, 728888188, 325024572
Offset: 0
Triangle T(n,k) begins:
1;
1;
1;
1, 2;
1, 8;
1, 22, 22;
1, 52, 172;
1, 114, 856, 604;
1, 240, 3488, 7296;
1, 494, 12746, 54746, 31238;
1, 1004, 43628, 330068, 518324;
1, 2026, 143244, 1756878, 5300418, 2620708;
1, 4072, 457536, 8641800, 43235304, 55717312;
1, 8166, 1434318, 40298572, 309074508, 728888188, 325024572;
1, 16356, 4438540, 180969752, 2026885824, 7589067592, 8460090160;
...
- Alois P. Heinz, Rows n = 0..100, flattened
- S. Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv preprint arXiv:1810.00993 [math.CO], 2018.
- David G. L. Wang, T. Zhao, The peak and descent statistics over ballot permutations, arXiv:2009.05973 [math.CO], 2020.
-
b:= proc(u, o, c) option remember; `if`(c<0, 0, `if`(u+o=0, 1/x,
add(expand(x*b(u-j, o-1+j, c-1)), j=1..u)+
add(b(u+j-1, o-j, c+1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(`if`(n=0, 1, b(n, 0, 1))):
seq(T(n), n=0..14);
-
b[u_, o_, c_] := b[u, o, c] = If[c < 0, 0, If[u + o == 0, 1/x, Sum[Expand[ x*b[u - j, o - 1 + j, c - 1]], {j, 1, u}] + Sum[b[u + j - 1, o - j, c + 1], {j, 1, o}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ If[n == 0, 1, b[n, 0, 1]]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 08 2018, after Alois P. Heinz *)
A316727
Number of permutations of {0,1,...,2n} with first element n whose sequence of ascents and descents forms a Dyck path.
Original entry on oeis.org
1, 1, 5, 87, 3337, 223333, 23068057, 3403720071, 679894572497, 176710079709345, 57967294285022281, 23427042148948682599, 11437832700333350250001, 6637473822604173137681381, 4515971399162518697397538173, 3560540787622773257563653593551
Offset: 0
a(0) = 1: 0.
a(1) = 1: 120.
a(2) = 5: 23041, 23140, 23410, 24031, 24130.
a(3) = 87: 3401652, 3402165, 3402651, 3405162, ..., 3625041, 3625140, 3645021, 3645120.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t>0, add(b(u-j, o+j-1, t-1), j=1..u), 0)+
`if`(o+u>t, add(b(u+j-1, o-j, t+1), j=1..o), 0))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..20);
-
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1,
If[t > 0, Sum[b[u - j, o + j - 1, t - 1], {j, 1, u}], 0] +
If[o + u > t, Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}], 0]];
a[n_] := b[n, n, 0];
a /@ Range[0, 20] (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)
A321268
Number of permutations on [n] whose up-down signature has nonnegative partial sums and which have exactly two descents.
Original entry on oeis.org
0, 0, 0, 0, 22, 172, 856, 3488, 12746, 43628, 143244, 457536, 1434318, 4438540, 13611136, 41473216, 125797010, 380341580, 1147318004, 3455325600, 10394291094, 31242645420, 93853769320, 281825553760, 846030314842, 2539248578732, 7620161662556, 22865518160768
Offset: 1
Some permutations counted by a(5) include 14253 and 34521.
- Sam Spiro, Table of n, a(n) for n = 1..100
- S. Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv:1810.00993 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (11,-50,122,-173,143,-64,12).
-
a[1] = 0; a[n_] := 2n^2 - 2n - 1 - n 2^(n-1) - 2 Binomial[n, 3] + Sum[ Binomial[n, k] (2^k - 2k), {k, 0, n}];
Table[a[n], {n, 1, 28}] (* Jean-François Alcover, Nov 11 2018 *)
-
a(n)={if(n<2, 0, 2*n^2 - 2*n - 1 - n*2^(n-1) - 2*binomial(n,3) + sum(k=0, n, binomial(n, k)*(2^k - 2*k)))} \\ Andrew Howroyd, Nov 01 2018
-
concat([0,0,0,0], Vec(2*x^5*(11 - 35*x + 32*x^2 - 6*x^3) / ((1 - x)^4*(1 - 2*x)^2*(1 - 3*x)) + O(x^40))) \\ Colin Barker, Mar 07 2019
A321269
Number of permutations on [n] whose up-down signature has nonnegative partial sums and which have exactly three descents.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 604, 7296, 54746, 330068, 1756878, 8641800, 40298572, 180969752, 790697160, 3385019968, 14270283414, 59457742524, 245507935018, 1006678811272, 4105447763032, 16672235476128, 67482738851220, 272439143364672, 1097660274098482, 4415486996246052
Offset: 1
The permutations counted by a(7) include 1237654 and 17265243.
- Alois P. Heinz, Table of n, a(n) for n = 1..1660
- S. Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv preprint arXiv:1810.00993 [math.CO], 2018.
- Index entries for linear recurrences with constant coefficients, signature (24,-260,1684,-7278,22172,-49004,79596,-95065,82508,-50616,20800,-5136,576).
-
t[n_, k_] := Sum[(-1)^j (k - j)^n Binomial[n + 1, j], {j, 0, k}];
a[n_] := If[n<7, 0, 4 t[n-1, 4] - (Binomial[n, 3] - Binomial[n, 2] + 4) * 2^(n-2) - 22 Binomial[n, 5] + 16 Binomial[n, 4] - 4 Binomial[n, 3] + 2n];
Array[a, 30] (* Jean-François Alcover, Feb 29 2020, from Sam Spiro's 1st formula *)
-
concat([0,0,0,0,0,0], Vec(2*x^7*(302 - 3600*x + 18341*x^2 - 52006*x^3 + 89327*x^4 - 94728*x^5 + 61016*x^6 - 23368*x^7 + 5424*x^8 - 576*x^9) / ((1 - x)^6*(1 - 2*x)^4*(1 - 3*x)^2*(1 - 4*x)) + O(x^30))) \\ Colin Barker, Mar 07 2019
Showing 1-8 of 8 results.
Comments