cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A341065 Number of ways to write n as an ordered sum of 5 squarefree numbers.

Original entry on oeis.org

1, 5, 15, 30, 50, 76, 120, 180, 250, 315, 401, 520, 670, 805, 955, 1160, 1445, 1715, 1980, 2290, 2741, 3180, 3605, 4040, 4690, 5341, 5985, 6600, 7490, 8380, 9251, 10060, 11240, 12415, 13595, 14670, 16295, 17850, 19425, 20780, 22905, 24905, 26895, 28600, 31335, 33966, 36485, 38620
Offset: 5

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, t) option remember;
          `if`(n=0, `if`(t=0, 1, 0), `if`(t<1, 0, add(
          `if`(numtheory[issqrfree](j), b(n-j, t-1), 0), j=1..n)))
        end:
    a:= n-> b(n, 5):
    seq(a(n), n=5..52);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    nmax = 52; CoefficientList[Series[Sum[MoebiusMu[k]^2 x^k, {k, 1, nmax}]^5, {x, 0, nmax}], x] // Drop[#, 5] &

Formula

G.f.: (Sum_{k>=1} mu(k)^2 * x^k)^5.

A308839 Sum of all the parts in the partitions of n into 5 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 5, 6, 14, 16, 36, 50, 77, 84, 130, 154, 225, 240, 340, 396, 532, 580, 777, 858, 1104, 1176, 1525, 1638, 2052, 2156, 2697, 2910, 3503, 3680, 4455, 4760, 5635, 5904, 7030, 7448, 8736, 9120, 10701, 11298, 13072, 13552, 15795, 16560, 18988, 19776
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 28 2019

Keywords

Examples

			The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |     50          77          84         130         154        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 16 2019
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[Sum[Sum[Sum[MoebiusMu[l]^2*MoebiusMu[k]^2*MoebiusMu[j]^2* MoebiusMu[i]^2*MoebiusMu[n - i - j - k - l]^2, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]

Formula

a(n) = n * Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l)^2, where mu is the Möbius function (A008683).
a(n) = n * A308840(n).

A341074 Number of partitions of n into 5 distinct squarefree parts.

Original entry on oeis.org

1, 1, 1, 0, 2, 3, 3, 3, 5, 8, 9, 8, 11, 15, 16, 16, 22, 27, 30, 31, 38, 46, 48, 49, 57, 72, 73, 76, 90, 107, 109, 112, 128, 151, 156, 160, 182, 214, 220, 224, 250, 290, 297, 306, 335, 387, 399, 409, 442, 503, 517, 529, 572, 641, 660, 676, 726, 809, 829, 846, 903
Offset: 17

Views

Author

Ilya Gutkovskiy, Feb 04 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0,
          `if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
          `if`(numtheory[issqrfree](i), b(n-i, min(n-i, i-1), t-1), 0)))
        end:
    a:= n-> b(n$2, 5):
    seq(a(n), n=17..77);  # Alois P. Heinz, Feb 04 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0,
         If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
         If[SquareFreeQ[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
    a[n_] := b[n, n, 5];
    Table[a[n], {n, 17, 77}] (* Jean-François Alcover, Jul 14 2021, after Alois P. Heinz *)
    Table[Count[IntegerPartitions[n,{5}],?(Length[Union[#]]==5&&AllTrue[#,SquareFreeQ]&)],{n,17,80}] (* _Harvey P. Dale, Sep 05 2023 *)

A308843 Sum of the third largest parts in the partitions of n into 5 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 8, 12, 13, 21, 23, 32, 33, 49, 56, 77, 86, 117, 130, 162, 174, 223, 239, 295, 312, 391, 418, 497, 520, 631, 675, 801, 844, 1009, 1072, 1247, 1306, 1537, 1628, 1890, 1972, 2312, 2425, 2786, 2889, 3325, 3472, 3955, 4089, 4671, 4851, 5474
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 28 2019

Keywords

Comments

Conjecture: a(4*k + 3) < a(4*k + 4) for 4*k + 3 >= 195. This conjecture holds for all terms in the b-file. - David A. Corneth, Sep 16 2019

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[j * MoebiusMu[l]^2*MoebiusMu[k]^2*MoebiusMu[j]^2 *MoebiusMu[i]^2*MoebiusMu[n - i - j - k - l]^2, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]
    Table[Total[Select[IntegerPartitions[n,{5}],AllTrue[#,SquareFreeQ]&][[All,3]]],{n,0,60}] (* Harvey P. Dale, Dec 26 2022 *)

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l)^2 * j, where mu is the Möbius function (A008683).
a(n) = A308839(n) - A308841(n) - A308842(n) - A308844(n) - A308845(n).

Extensions

a(54)..a(55) from David A. Corneth, Sep 16 2019

A308841 Sum of the smallest parts in the partitions of n into 5 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 6, 8, 8, 12, 14, 20, 19, 26, 30, 39, 39, 52, 57, 71, 72, 95, 100, 123, 125, 155, 166, 198, 200, 242, 256, 304, 306, 366, 383, 445, 453, 533, 556, 642, 652, 762, 786, 898, 914, 1048, 1091, 1236, 1261, 1434, 1487, 1671, 1695, 1919
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 28 2019

Keywords

Examples

			The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |      6           8           8          12          14        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 16 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[l * MoebiusMu[l]^2*MoebiusMu[k]^2*MoebiusMu[j]^2* MoebiusMu[i]^2*MoebiusMu[n - i - j - k - l]^2, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l)^2 * l, where mu is the Möbius function (A008683).
a(n) = A308839(n) - A308842(n) - A308843(n) - A308844(n) - A308845(n).

A308842 Sum of the fourth largest parts in the partitions of n into 5 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 7, 9, 10, 16, 18, 25, 25, 35, 40, 51, 54, 74, 83, 105, 112, 145, 156, 191, 198, 246, 267, 317, 331, 402, 430, 502, 520, 613, 652, 758, 791, 925, 979, 1118, 1152, 1337, 1406, 1603, 1667, 1905, 2009, 2266, 2343, 2652, 2787, 3134
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 28 2019

Keywords

Examples

			The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |      7           9          10          16          18        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 16 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[k * MoebiusMu[l]^2*MoebiusMu[k]^2*MoebiusMu[j]^2 *MoebiusMu[i]^2*MoebiusMu[n - i - j - k - l]^2, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 50}]

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l)^2 * k, where mu is the Möbius function (A008683).
a(n) = A308839(n) - A308841(n) - A308843(n) - A308844(n) - A308845(n).

A308844 Sum of the second largest parts in the partitions of n into 5 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 3, 4, 8, 10, 16, 18, 29, 33, 52, 59, 83, 93, 125, 138, 178, 196, 252, 275, 350, 380, 471, 506, 634, 689, 839, 901, 1096, 1176, 1405, 1484, 1767, 1861, 2199, 2294, 2695, 2823, 3281, 3388, 3941, 4101, 4714, 4901, 5607, 5843, 6643, 6893
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 28 2019

Keywords

Examples

			The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |     10          16          18          29          33        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 16 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Select[IntegerPartitions[n,{5}],AllTrue[#,SquareFreeQ]&][[All,2]]],{n,0,60}] (* Harvey P. Dale, Nov 19 2022 *)

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l)^2 * i, where mu is the Möbius function (A008683).
a(n) = A308839(n) - A308841(n) - A308842(n) - A308843(n) - A308845(n).

A308845 Sum of the largest parts in the partitions of n into 5 squarefree parts.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 5, 5, 13, 19, 32, 35, 52, 66, 96, 104, 147, 177, 240, 263, 356, 392, 514, 543, 712, 763, 972, 1015, 1271, 1370, 1652, 1728, 2084, 2223, 2623, 2750, 3275, 3480, 4087, 4276, 5011, 5312, 6141, 6388, 7443, 7842, 8987, 9405, 10753, 11335
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 28 2019

Keywords

Examples

			The partitions of n into 5 parts for n = 10, 11, ..
                                                       1+1+1+1+10
                                                        1+1+1+2+9
                                                        1+1+1+3+8
                                                        1+1+1+4+7
                                                        1+1+1+5+6
                                            1+1+1+1+9   1+1+2+2+8
                                            1+1+1+2+8   1+1+2+3+7
                                            1+1+1+3+7   1+1+2+4+6
                                            1+1+1+4+6   1+1+2+5+5
                                            1+1+1+5+5   1+1+3+3+6
                                1+1+1+1+8   1+1+2+2+7   1+1+3+4+5
                                1+1+1+2+7   1+1+2+3+6   1+1+4+4+4
                                1+1+1+3+6   1+1+2+4+5   1+2+2+2+7
                    1+1+1+1+7   1+1+1+4+5   1+1+3+3+5   1+2+2+3+6
                    1+1+1+2+6   1+1+2+2+6   1+1+3+4+4   1+2+2+4+5
                    1+1+1+3+5   1+1+2+3+5   1+2+2+2+6   1+2+3+3+5
        1+1+1+1+6   1+1+1+4+4   1+1+2+4+4   1+2+2+3+5   1+2+3+4+4
        1+1+1+2+5   1+1+2+2+5   1+1+3+3+4   1+2+2+4+4   1+3+3+3+4
        1+1+1+3+4   1+1+2+3+4   1+2+2+2+5   1+2+3+3+4   2+2+2+2+6
        1+1+2+2+4   1+1+3+3+3   1+2+2+3+4   1+3+3+3+3   2+2+2+3+5
        1+1+2+3+3   1+2+2+2+4   1+2+3+3+3   2+2+2+2+5   2+2+2+4+4
        1+2+2+2+3   1+2+2+3+3   2+2+2+2+4   2+2+2+3+4   2+2+3+3+4
        2+2+2+2+2   2+2+2+2+3   2+2+2+3+3   2+2+3+3+3   2+3+3+3+3
--------------------------------------------------------------------------
  n  |     10          11          12          13          14        ...
--------------------------------------------------------------------------
a(n) |     19          32          35          52          66        ...
--------------------------------------------------------------------------
- _Wesley Ivan Hurt_, Sep 16 2019
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[Sum[Sum[(n - i - j - k - l) * MoebiusMu[l]^2*MoebiusMu[k]^2*MoebiusMu[j]^2*MoebiusMu[i]^2*MoebiusMu[n - i - j - k - l]^2, {i, j, Floor[(n - j - k - l)/2]}], {j, k, Floor[(n - k - l)/3]}], {k, l, Floor[(n - l)/4]}], {l, Floor[n/5]}], {n, 0, 80}]

Formula

a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l)^2 * (n-i-j-k-l), where mu is the Möbius function (A008683).
a(n) = A308839(n) - A308841(n) - A308842(n) - A308843(n) - A308844(n).

A347656 Number of partitions of n into at most 5 squarefree parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 29, 33, 39, 43, 51, 56, 65, 71, 81, 89, 101, 108, 122, 132, 147, 157, 175, 187, 206, 218, 241, 257, 282, 298, 327, 346, 378, 397, 434, 457, 498, 520, 567, 595, 644, 671, 726, 759, 816, 848, 911, 949, 1017, 1053, 1129, 1172
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 09 2021

Keywords

Crossrefs

Programs

Showing 1-9 of 9 results.