cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A309181 Least number with exactly n nonunitary divisors.

Original entry on oeis.org

1, 4, 8, 16, 24, 36, 48, 256, 72, 1024, 180, 144, 216, 16384, 288, 65536, 360, 576, 3072, 900, 864, 1296, 720, 2304, 1080, 67108864, 2592, 268435456, 1440, 9216, 196608, 5184, 2160, 17179869184, 2880, 36864, 10368, 3600, 6300, 1099511627776, 4320, 20736, 6480
Offset: 0

Views

Author

Amiram Eldar, Jul 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nud[n_] := DivisorSigma[0, n] - 2^PrimeNu[n]; m = 24; c = 0; s = Table[0, {m + 1}]; k = 1; While[c < m + 1, n = nud[k]; If[n <= m && s[[n + 1]] == 0, c++; s[[n + 1]] = k]; k++]; s
  • PARI
    nnud(n) = numdiv(n) - 2^omega(n); \\ A048105
    a(n) = my(k=1); while (nnud(k) != n, k++); k; \\ Michel Marcus, Jul 17 2019

Formula

A048105(a(n)) = n and A048105(k) != n for all k < a(n).
a(n) <= 2^(n+1).

A174961 Number of non-unitary divisors of the n-th nonsquarefree number.

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 2, 4, 1, 2, 2, 4, 5, 4, 2, 2, 6, 1, 2, 2, 4, 4, 4, 2, 5, 2, 8, 2, 2, 6, 3, 4, 4, 4, 2, 8, 2, 2, 5, 4, 8, 6, 2, 2, 8, 1, 2, 2, 4, 6, 4, 4, 4, 4, 11, 2, 2, 4, 4, 2, 4, 8, 6, 2, 8, 1, 2, 2, 2, 6, 10, 4, 2, 4, 10, 5, 4, 8, 4, 2, 6, 2, 12, 4, 8, 5, 4, 4, 4, 2, 12, 2, 4, 2
Offset: 1

Views

Author

N. Wu (neil_wu0626(AT)yahoo.com), Apr 02 2010

Keywords

Comments

The nonzero terms of A048105.
Also number of nonsquarefree divisors of the n-th nonsquarefree number. The terms in A013929 which correspond to records in this sequence are given by A309141(n); n >= 2. - David James Sycamore, Jan 07 2025

Examples

			For n = 4, the fourth nonsquarefree number is A013929(4) = 12 which has 2 non-unitary divisors, 2 and 6. Therefore a(4) = 2.
The number of nonsquarefree divisors of 12 is also = 2 (4 and 12). For n = 55, A013929(55) = 144 so by the third formula above a(55) = A000005(144) - A000005(6) = 15 - 4 = 11 = number of nonsquarefree divisors of 144 (4,8,9,12,16,18,24,36,48,72,144). - _David James Sycamore_, Jan 07 2025
		

Crossrefs

Programs

  • Mathematica
    Select[Table[DivisorSigma[0, n] - 2^(PrimeNu[n]), {n, 1, 500}], # > 0 &] (* G. C. Greubel, May 21 2017 *)
  • PARI
    lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(numdiv(f) - 2^omega(f), ", ")));} \\ Amiram Eldar, Dec 09 2023
    
  • Python
    from math import prod, isqrt
    from sympy import mobius, factorint
    def A174961(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return -(1<Chai Wah Wu, Aug 12 2024

Formula

From Amiram Eldar, Dec 09 2023: (Start)
a(n) = A048105(A013929(n)).
Sum_{k=1..n} a(k) ~ (n/zeta(2)) * (log(n) + 2*gamma - 1 - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). (End)
a(n) = A000005(A013929(n)) - A000005(A007947(A013929(n))). - David James Sycamore, Jan 07 2025

Extensions

Edited by Amiram Eldar, Dec 09 2023

A329882 Nonunitary superabundant numbers: numbers m such that nusigma(m)/m > nusigma(k)/k for all k < m, where nusigma(m) is the sum of nonunitary divisors of m (A048146).

Original entry on oeis.org

1, 4, 8, 16, 24, 36, 48, 72, 144, 288, 360, 432, 720, 1440, 1800, 2160, 3600, 7200, 10800, 15120, 21600, 25200, 50400, 75600, 151200, 302400, 453600, 529200, 831600, 1058400, 1663200, 2116800, 3175200, 3326400, 4989600, 5821200, 9979200, 11642400, 21621600
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Crossrefs

The nonunitary version of A004394.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; rm = -1; s = {}; Do[r = nusigma[n]/n; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10000}]; s

A329883 Nonunitary highly abundant numbers: numbers m such that nusigma(m) > nusigma(k) for all k < m, where s(n) is the sum of nonunitary divisors of n (A048146).

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 32, 36, 48, 64, 72, 96, 108, 120, 144, 180, 192, 216, 288, 360, 432, 504, 576, 648, 720, 864, 1008, 1080, 1296, 1440, 1728, 1800, 2016, 2160, 2520, 2880, 3024, 3240, 3456, 3528, 3600, 4320, 5040, 5400, 5760, 6048, 6480, 7056, 7200, 8640
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2019

Keywords

Comments

The corresponding record values are 0, 2, 6, 8, 14, 24, 30, 41, 56, 62, 105, 120, 140, 144, 233, 246, 248, 348, 489, 630, 764, 840, ...

Crossrefs

The nonunitary version of A002093.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; num = -1; s = {}; Do[nu = nusigma[n]; If[nu > num, num = nu; AppendTo[s, n]], {n, 1, 10^4}]; s

A335386 Tri-unitary highly composite numbers: where the number of tri-unitary divisors (A335385) increases to a record.

Original entry on oeis.org

1, 2, 6, 24, 120, 840, 7560, 83160, 1081080, 18378360, 349188840, 8031343320, 200783583000, 5822723907000, 180504441117000, 6678664321329000, 273825237174489000, 11774485198503027000, 553400804329642269000, 27116639412152471181000, 1437181888844080972593000
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Crossrefs

Analogous sequences: A002182 (highly composite), A002110 (unitary), A037992 (infinitary), A293185 (bi-unitary), A318278 (exponential), A306736 (exponential infinitary), A307845 (exponential unitary), A309141 (nonunitary), A322484 (semi-unitary).
Cf. A335385.

Programs

  • Mathematica
    f[p_, e_] := If[e == 3 || e == 6, 4, 2]; d[1] = 1; d[n_] := Times @@ (f @@@ FactorInteger[n]); dm = 0; s = {}; Do[If[(d1 = d[n]) > dm, dm = d1; AppendTo[s, n]], {n, 1, 1100000}]; s

Formula

A335385(a(n)) = 2^(n-1).

A333931 Recursive highly composite numbers: numbers with a record number of recursive divisors (A282446).

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 900, 1260, 4620, 6300, 13860, 44100, 55440, 69300, 180180, 485100, 720720, 900900, 2882880, 3063060, 6306300, 12252240, 15315300, 49008960, 58198140, 107207100, 232792560, 290990700, 931170240, 1163962800, 2036934900, 4655851200
Offset: 1

Views

Author

Amiram Eldar, Apr 10 2020

Keywords

Comments

The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 48, 54, ...

Crossrefs

Subsequence of A025487.
Cf. A282446.
Analogous sequences: A002182 (highly composite), A002110 (unitary), A037992 (infinitary), A293185 (bi-unitary), A309141 (nonunitary), A318278 (exponential).

Programs

  • Mathematica
    recDivNum[1] = 1; recDivNum[n_] := recDivNum[n] = Times @@ (1 + recDivNum/@ (Last /@ FactorInteger[n])); rm = 0; s = {}; Do[r = recDivNum[n]; If[r > rm, rm = r; AppendTo[s, n]], {n, 1, 10^4}]; s

A358253 Numbers with a record number of non-unitary square divisors.

Original entry on oeis.org

1, 8, 32, 128, 288, 864, 1152, 2592, 4608, 10368, 20736, 28800, 41472, 64800, 115200, 259200, 518400, 1036800, 2073600, 4147200, 8294400, 9331200, 12700800, 25401600, 50803200, 101606400, 203212800, 406425600, 457228800, 635040000, 812851200, 914457600, 1270080000
Offset: 1

Views

Author

Amiram Eldar, Nov 05 2022

Keywords

Comments

Numbers m such that A056626(m) > A056626(k) for all k < m.
The corresponding record values are 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 20, 22, ... (see the link for more values).

Crossrefs

Subsequence of A025487.
Similar sequences: A002182 (all divisors), A002110 (unitary), A037992 (infinitary), A046952 (square divisors), A053624 (odd divisors), A293185 (bi-unitary), A309141 (non-unitary), A318278 (exponential).

Programs

  • Mathematica
    f1[p_, e_] := 1 + Floor[e/2]; f2[p_, e_] := 2^(1 - Mod[e, 2]); f[1] = 0; f[n_] := Times @@ f1 @@@ (fct = FactorInteger[n]) - Times @@ f2 @@@ fct; s = {}; fmax = -1; Do[If[(fn = f[n]) > fmax, fmax = fn; AppendTo[s, n]], {n, 1, 10^5}]; s
  • PARI
    s(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + floor(f[i,2]/2)) - 2^sum(i = 1, #f~, 1 - f[i,2]%2);}
    lista(nmax) = {my(smax = -1, sn); for(n = 1, nmax, sn = s(n); if(sn > smax, smax = sn; print1(n, ", "))); }

A348342 Noninfinitary highly composite numbers: where the number of noninfinitary divisors (A348341) increases to a record.

Original entry on oeis.org

1, 4, 12, 16, 36, 48, 144, 240, 576, 720, 1680, 2880, 3600, 5040, 11520, 14400, 15120, 20160, 25200, 45360, 55440, 80640, 100800, 166320, 176400, 226800, 277200, 498960, 720720, 887040, 1108800, 1587600, 1940400, 2494800, 3603600, 6486480, 9979200, 11531520, 14414400
Offset: 1

Views

Author

Amiram Eldar, Oct 13 2021

Keywords

Comments

The record numbers of noninfinitary divisors are 0, 1, 2, 3, 5, 6, 11, 12, 13, 22, 24, 26, 37, 44, 46, ... (see the link for more values).

Crossrefs

Cf. A348341.
Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    nid[1] = 0; nid[n_] := DivisorSigma[0, n] - Times @@ Flatten[2^DigitCount[#, 2, 1] & /@ FactorInteger[n][[;; , 2]]]; dm = -1; s = {}; Do[If[(d = nid[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s

A348632 Nonexponential highly composite numbers: where the number of nonexponential divisors (A160097) increases to a record.

Original entry on oeis.org

1, 6, 12, 24, 30, 60, 120, 210, 240, 360, 420, 720, 840, 1260, 1680, 2520, 3360, 5040, 7560, 9240, 10080, 15120, 18480, 25200, 27720, 36960, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 480480, 498960, 554400, 665280, 720720, 1081080, 1441440
Offset: 1

Views

Author

Amiram Eldar, Oct 26 2021

Keywords

Comments

The corresponding record values are 1, 3, 4, 6, 7, 10, 14, 15, 17, 20, 22, 24, ... (see the link for more values).

Crossrefs

Cf. A160097.
Subsequence of A025487.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f1[p_, e_] := e + 1; f2[p_, e_] := DivisorSigma[0, e]; ned[1] = 1; ned[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; dm = -1; s = {}; Do[If[(d = ned[n]) > dm, dm = d; AppendTo[s, n]], {n, 1, 10^6}]; s

A353899 Indices of records in A353898.

Original entry on oeis.org

1, 2, 4, 6, 12, 30, 36, 60, 180, 420, 900, 1260, 4620, 6300, 13860, 44100, 55440, 69300, 180180, 485100, 720720, 900900, 3063060, 6306300, 12252240, 15315300, 58198140, 107207100, 232792560, 290990700, 1163962800, 2036934900, 5354228880, 6692786100, 22406283900
Offset: 1

Views

Author

Amiram Eldar, May 10 2022

Keywords

Comments

First differs from A333931 at n=23.
The corresponding record values are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 48, 54, 72, 81, 96, 108, 144, 162, ... (see the link for more values).

Crossrefs

Subsequence of A025487 and A138302.
Similar sequences: A002182, A002110 (unitary), A037992 (infinitary), A293185, A306736, A307845, A309141, A318278, A322484, A335386.

Programs

  • Mathematica
    f[p_, e_] := Floor[Log2[e]] + 2; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; sm = 0; Do[s1 = s[n]; If[s1 > sm, sm = s1; AppendTo[seq, n]], {n, 1, 10^6}]; seq
Showing 1-10 of 11 results. Next