cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A065048 Largest unsigned Stirling number of the first kind: max_k(s(n+1,k)); i.e., largest coefficient of polynomial x*(x+1)*(x+2)*(x+3)*...*(x+n).

Original entry on oeis.org

1, 1, 3, 11, 50, 274, 1764, 13132, 118124, 1172700, 12753576, 150917976, 1931559552, 26596717056, 392156797824, 6165817614720, 102992244837120, 1821602444624640, 34012249593822720, 668609730341153280, 13803759753640704000, 298631902863216384000
Offset: 0

Views

Author

Henry Bottomley, Nov 06 2001

Keywords

Comments

n! <= a(n) <= (n+1)!; n <= a(n+1)/a(n) <= (n+1). - Max Alekseyev, Jul 17 2019

Examples

			a(4)=50 since polynomial is x^4 + 10*x^3 + 35*x^2 + 50*x + 24.
		

Crossrefs

Programs

  • Maple
    P:= x: A[0]:= 1:
    for n from 1 to 50 do
      P:= expand(P*(x+n));
      A[n]:= max(coeffs(P,x));
    od:
    seq(A[i],i=0..50); # Robert Israel, Jul 04 2016
  • Mathematica
    a[n_] := Max[Array[Abs[StirlingS1[n+1, #]]&, n+1]];
    Array[a, 100, 0] (* Griffin N. Macris, Jul 03 2016 *)
  • PARI
    a(n) = if (n==0, 1, vecmax(vector(n, k, abs(stirling(n+1, k, 1))))); \\ Michel Marcus, Jul 04 2016; corrected Jun 12 2022
    
  • Python
    from collections import Counter
    def A065048(n):
        c = {1:1}
        for k in range(1,n+1):
            d = Counter()
            for j in c:
                d[j] += k*c[j]
                d[j+1] += c[j]
            c = d
        return max(c.values()) # Chai Wah Wu, Jan 31 2024

Formula

For n in the interval [A309237(k)-1, A309237(k+1)-2], a(n) = |Stirling1(n+1,k)|. - Max Alekseyev, Jul 17 2019

A076620 Coefficient of x^a(n) in (x+1)*(x+2)*...*(x+n) is the largest one.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Benoit Cloitre, Nov 10 2002

Keywords

Examples

			In (x+1)(x+2)(x+3) = x^3 + 6*x^2 + 11*x + 6, the largest coefficient (11) appears at x^1, hence a(3)=1.
		

Crossrefs

Programs

  • PARI
    a(n) = my(p=prod(j=1, n, x+j), m=vecmax(Vec(p))); for (i=0, poldegree(p), if (polcoef(p, i)==m, return(i))); \\ Michel Marcus, Feb 19 2021
    
  • PARI
    first(n) = {res = vector(n); my(r = 1); v = [1]; for(i = 1, n, v = concat(0, v) + concat(v, 0)*i; for(j = r + 1, #v, if(v[j] > v[j - 1], r++ , next ); ); res[i] = r-1 ); res } \\ David A. Corneth, Feb 21 2021
    
  • Python
    from sympy import prod, Poly
    from sympy.abc import x
    def A076620(n):
        y = Poly(prod(x+i for i in range(1,n+1))).all_coeffs()[::-1]
        return y.index(max(y)) # Chai Wah Wu, Mar 07 2021

Formula

Is a(n) - floor(log(n)) bounded?

A341803 a(n) is the least k such that A076620(k) = n.

Original entry on oeis.org

1, 2, 7, 24, 72, 203, 564, 1556, 4274, 11709, 32021, 87463, 238691
Offset: 0

Views

Author

David A. Corneth, Feb 20 2021

Keywords

Comments

Conjecture: Starting at 7, terms coincide with A309237 - 1. - Hugo Pfoertner, Feb 21 2021

Examples

			a(4) = 24 as A076620(24) = 4 while A076620(k) < 4 for k < 24.
		

Crossrefs

Cf. A076620.

Programs

  • Mathematica
    With[{s = Array[-1 + FirstPosition[#, Max[#]][[1]] &@ CoefficientList[Pochhammer[x, #]/x, x] &, 600]}, {1}~Join~Array[-1 + FirstPosition[s, #][[1]] &, Max@ s]] (* Michael De Vlieger, Feb 22 2021 *)
  • PARI
    first(n) = {res = vector(n); res[1] = 1; my(r = 1); print1(1", "); v = [1]; for(i = 1, oo, v = concat(0, v) + concat(v, 0)*i; if(#v > n, v = v[^-1]; ); for(j = r + 1, #v, if(v[j] > v[j - 1], r++; res[r] = i; print1(i", "); if(r >= n, return(res); ) , next ))); res }

Formula

a(n) ~ c*e^n.
Showing 1-3 of 3 results.