cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A002870 Largest Stirling numbers of second kind: a(n) = max_{k=1..n} S2(n,k).

Original entry on oeis.org

1, 1, 3, 7, 25, 90, 350, 1701, 7770, 42525, 246730, 1379400, 9321312, 63436373, 420693273, 3281882604, 25708104786, 197462483400, 1709751003480, 15170932662679, 132511015347084, 1241963303533920, 12320068811796900, 120622574326072500, 1203163392175387500
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008277 (triangle of Stirling numbers of the second kind), A024417 (k at which the maximum occurs).
Cf. A065048.

Programs

  • Mathematica
    a[n_] := Max[ Table[ StirlingS2[n, k], {k, 1, n}]]; Table[a[n], {n, 1, 23}] (* Jean-François Alcover, Nov 15 2011 *)
  • PARI
    a(n) = vecmax(vector(n, k, stirling(n, k, 2))); \\ Michel Marcus, Oct 14 2015

Extensions

More terms from James Sellers, Jul 10 2000

A076620 Coefficient of x^a(n) in (x+1)*(x+2)*...*(x+n) is the largest one.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Benoit Cloitre, Nov 10 2002

Keywords

Examples

			In (x+1)(x+2)(x+3) = x^3 + 6*x^2 + 11*x + 6, the largest coefficient (11) appears at x^1, hence a(3)=1.
		

Crossrefs

Programs

  • PARI
    a(n) = my(p=prod(j=1, n, x+j), m=vecmax(Vec(p))); for (i=0, poldegree(p), if (polcoef(p, i)==m, return(i))); \\ Michel Marcus, Feb 19 2021
    
  • PARI
    first(n) = {res = vector(n); my(r = 1); v = [1]; for(i = 1, n, v = concat(0, v) + concat(v, 0)*i; for(j = r + 1, #v, if(v[j] > v[j - 1], r++ , next ); ); res[i] = r-1 ); res } \\ David A. Corneth, Feb 21 2021
    
  • Python
    from sympy import prod, Poly
    from sympy.abc import x
    def A076620(n):
        y = Poly(prod(x+i for i in range(1,n+1))).all_coeffs()[::-1]
        return y.index(max(y)) # Chai Wah Wu, Mar 07 2021

Formula

Is a(n) - floor(log(n)) bounded?

A309237 Records in the indices of largest unsigned Stirling number of first kind: a(n) = smallest m such that c(m,n) = max_{k=0,1...,m} c(m,k).

Original entry on oeis.org

0, 1, 2, 8, 25, 73, 204, 565, 1557, 4275, 11710, 32022, 87464, 238692, 650971, 1774466
Offset: 0

Views

Author

Max Alekseyev, Jul 17 2019

Keywords

Comments

Smallest m such that A065048(m-1) = c(m,n).
For k in the interval [a(n),a(n+1)-1], A065048(k-1) = c(k,n).
Ratio a(n+1)/a(n) seems to decrease and tend to exp(1) as n grows.

Examples

			n=2 is a value for index k delivering the maximum value of c(m,k) for each fixed m in the interval [a(2),a(3)-1] = [2,7]. Then, for m in [a(3),a(4)-1] = [8,24], the maximum is given by c(m,3), and so on.
		

Crossrefs

Programs

  • PARI
    { A309237(n) = my(t=prod(i=1,n-1,x+i+O(x^n)), m=n); while( polcoef(t,n-1)-polcoef(t,n-2) < 0, t*=x+m; m++); m; }

Extensions

a(14)-a(15) from Alexander Fritsch and Johann Peters, Dec 04 2024

A356253 a(n) is the largest coefficient of P(x) := Product_{k} (x + p_k), where (p_k) are the primes dividing n listed with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 12, 9, 10, 11, 16, 13, 14, 15, 32, 17, 21, 19, 24, 21, 22, 23, 44, 25, 26, 27, 32, 29, 31, 31, 80, 33, 34, 35, 60, 37, 38, 39, 68, 41, 42, 43, 48, 45, 46, 47, 112, 49, 50, 51, 56, 53, 81, 55, 92, 57, 58, 59, 92, 61, 62, 63, 240, 65, 66, 67, 72
Offset: 1

Views

Author

Thomas Scheuerle, Jul 31 2022

Keywords

Comments

a(n) is the greatest number we may obtain by applying elementary symmetric functions onto the prime factors of n with multiplicity.
The record values of a(n)/n appear at powers of two.
If a(n) is greater than n, then it equals in most cases A003415(n), the first exception where a(n) > A003415(n) > n is at n = 64.
Conjectured: a(A002110(n)) = A024451(n), for n > 2.
Conjecture equality breaks down after n = 175, as a(A002110(176)) > A024451(176). - Antti Karttunen, Feb 08 2024

Crossrefs

Cf. A002110, A003415, A024451, A070918, A083348, A109388, A260613, A369657 (difference between this sequence and A003415).
Cf. A065048 (same concept but uses numbers 1..n instead of prime factors of n).

Programs

  • PARI
    a(n) = vecmax(Vec(vecprod([(x+f[1])^f[2] | f<-factor(n)~]))) \\ Edited by M. F. Hasler, Feb 14 2024

Formula

a(n) = n iff n is not in A083348, otherwise a(n) > n.
a(2^n) = A109388(n) = binomial( n, floor(n/3) )*2^(n-floor(n/3)).
a(p^n) = binomial( n, floor(n/(p+1)) )*p^(n-floor(n/(p+1))), if p is prime.
a(p*n)/a(n) >= n and <= n+1 if p is prime.
a(p*q)/a(q) = p if p and q are prime. This is also true if q is a prime greater than 7 and p is a product of two primes greater than 4.
a(A002110(n)) >= A024451(n), for n > 2. The maximum of row n in A260613 a variant of A070918.

A076622 Coefficient of x^a(n) in (x-1)*(x-2)*...*(x-n) is the largest one (not in absolute value).

Original entry on oeis.org

1, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
Offset: 1

Views

Author

Benoit Cloitre, Nov 10 2002

Keywords

Examples

			(x-1)(x-2)(x-3) = x^3 - 6*x^2 + 11*x - 6, 11 is the largest coefficient for x^1, hence a(3)=1
		

Crossrefs

Cf. A065048.

Programs

  • Maple
    N:= 200: # for a(1)..a(N)
    V:= Vector(N): L:= <1>:
    for n from 1 to N do
      L:= -n*  + <0, L>;
      V[n]:= max[index](L)[1]-1
    od:
    convert(V,list); # Robert Israel, Aug 27 2020

Formula

Is a(n)-floor(log(n)) bounded ?

A154416 Maximal Stirling numbers of the first kind.

Original entry on oeis.org

1, 1, 1, 2, 11, 35, 274, 1624, 13068, 118124, 1026576, 12753576, 120543840, 1931559552, 20313753096, 392156797824, 5056995703824, 102992244837120, 1583313975727488, 34012249593822720, 610116075740491776, 13803759753640704000, 284093315901811468800
Offset: 0

Views

Author

Roger L. Bagula, Jan 09 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Max[Table[StirlingS1[n, m], {m, 0, n}]], {n, 0, 30}]
  • PARI
    a(n) = vecmax(vector(n+1, m, stirling(n, m-1, 1))); \\ Michel Marcus, Sep 16 2016

Formula

a(n) = max_{m=0..n} StirlingS1(n,m).

A369770 a(n) is the maximal coefficient in the expansion of Product_{k=1..n} (1+k*x)^k.

Original entry on oeis.org

1, 1, 8, 387, 192832, 1348952000, 142641794707200, 271057611231886800384, 10679112895658933205816311808, 9866210328276596971591655994333069312, 238373589086269734817383263830485997977600000000, 166142193793387680126634957823414405189312889036472320000000
Offset: 0

Views

Author

Joerg Arndt, Jan 31 2024

Keywords

Crossrefs

Cf. A065048 (maximal coefficient in Product_{k=1..n} (1+k*x) ).

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=0, 1, expand(b(n-1)*(1+n*x)^n)) end:
    a:= n-> max(coeffs(b(n))):
    seq(a(n), n=0..11);  # Alois P. Heinz, Jan 31 2024
  • PARI
    a(n)=vecmax(Vec(prod(k=1,n,(1+k*x)^k)));
    vector(20,n,a(n-1))
    
  • Python
    from collections import Counter
    from math import comb
    def A369770(n):
        c = {0:1}
        for k in range(1,n+1):
            d = Counter(c)
            for j in c:
                a = c[j]
                for i in range(1,k+1):
                    d[j+i] += comb(k,i)*k**i*a
            c = d
        return max(c.values()) # Chai Wah Wu, Jan 31 2024

A309242 a(n) is the smallest integer m such that the equality Product_{i=1..n} (x_i + m) = (m+n)!/m! for integers x_1, ..., x_n from N = { 1, 2, ..., n } guarantees that they form a permutation of N.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 6, 9, 10, 16, 18, 27, 28, 33, 45, 45, 45, 56, 78, 81, 108, 120, 136, 140, 180, 180, 192, 209, 210, 280, 280, 286, 325, 325, 380, 392, 527, 527, 527, 625, 650, 650, 703, 703
Offset: 1

Views

Author

Max Alekseyev, Jul 17 2019

Keywords

Comments

a(n) <= A065048(n) + 1.

A349404 The maximal coefficient in the expansion of x_1(x_1 + x_2)...(x_1 + x_2 + ... + x_n).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 27, 96, 384, 1536, 7500, 37500, 194400, 1166400, 7563150, 52942050, 385351680, 3082813440, 24998984640, 224990861760, 2024917755840, 19051200000000, 190512000000000, 1944663768432000, 21391301452752000
Offset: 0

Views

Author

Sela Fried, Nov 16 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Max/@Table[Values@CoefficientRules[Times@@Array[Total@Array[x,#]&,n]],{n,0,12}] (* Giorgos Kalogeropoulos, Nov 16 2021 *)
Showing 1-9 of 9 results.