cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A309091 Decimal expansion of 4/(Pi-2).

Original entry on oeis.org

3, 5, 0, 3, 8, 7, 6, 7, 8, 7, 7, 6, 8, 2, 1, 7, 3, 2, 2, 4, 0, 7, 8, 1, 9, 4, 0, 3, 0, 2, 2, 9, 0, 7, 7, 5, 8, 5, 0, 0, 7, 9, 6, 0, 1, 3, 6, 1, 1, 4, 8, 3, 1, 2, 7, 2, 8, 0, 9, 4, 1, 9, 0, 0, 2, 7, 9, 9, 6, 5, 7, 7, 4, 0, 8, 7, 4, 2, 1, 9, 9, 0, 2, 6, 9, 0, 3, 3, 5, 0, 3, 7, 6, 7, 0, 8, 9, 1, 4, 3, 9, 8, 2, 9, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 11 2019

Keywords

Comments

This can be computed using a recursion formula discovered by an algorithm called "The Ramanujan Machine":
1*3
4/(Pi-2) = 3 + --------------------
2*4
5 + ----------------
3*5
7 + ------------
4*6
9 + --------
11 + ... .
For a proof by humans see the arXiv:1907.00205 preprint linked below.

Examples

			3.50387678776821732240781940302290775850079601361148312728094190...
		

Crossrefs

Programs

  • Maple
    nn:= 126: # number of digits
    b:= i-> `if`(i<2*nn, 2*i+1 +i*(i+2)/b(i+1), 1):
    evalf(b(1), nn);
  • Mathematica
    RealDigits[4/(Pi-2), 10, 120][[1]] (* Amiram Eldar, Jun 29 2023 *)

A309420 Decimal expansion of 4/(3*Pi-8).

Original entry on oeis.org

2, 8, 0, 7, 4, 5, 4, 9, 9, 3, 0, 8, 5, 3, 7, 9, 4, 7, 6, 5, 7, 1, 5, 9, 6, 6, 9, 3, 9, 2, 6, 9, 7, 1, 7, 6, 8, 2, 8, 8, 8, 9, 1, 2, 7, 7, 7, 4, 7, 9, 2, 0, 5, 9, 6, 1, 4, 3, 0, 5, 7, 5, 2, 5, 3, 2, 0, 7, 9, 4, 1, 4, 2, 1, 7, 9, 9, 9, 0, 5, 7, 0, 8, 8, 2, 9, 5, 2, 4, 4, 1, 3, 9, 3, 8, 1, 0, 6, 0, 1, 7, 1, 5, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 30 2019

Keywords

Comments

Conjecturally, this can be computed using a recursion formula discovered by an algorithm called "The Ramanujan Machine":
1*1
4/(3*Pi-8) = 3 - --------------------
2*3
6 - ----------------
3*5
9 - ------------
4*7
12 - --------
15 - ... .

Examples

			2.80745499308537947657159669392697176828889127774792...
		

Crossrefs

Programs

  • Maple
    nn:= 126: # number of digits
    # b:= i-> `if`(i<4*nn, 3*i -i*(2*i-1)/b(i+1), 1):
    # evalf(b(1), nn);
    evalf(4/(3*Pi-8), nn);
  • Mathematica
    RealDigits[4/(3 Pi-8),10,120][[1]] (* Harvey P. Dale, May 09 2021 *)

A334397 Decimal expansion of (e - 2)/e.

Original entry on oeis.org

2, 6, 4, 2, 4, 1, 1, 1, 7, 6, 5, 7, 1, 1, 5, 3, 5, 6, 8, 0, 8, 9, 5, 2, 4, 5, 9, 6, 7, 7, 0, 7, 8, 2, 6, 5, 1, 0, 8, 3, 7, 7, 7, 3, 7, 9, 3, 6, 4, 6, 4, 3, 3, 0, 9, 8, 4, 3, 2, 6, 3, 9, 6, 6, 0, 5, 0, 7, 7, 0, 0, 8, 5, 1, 0, 2, 0, 0, 3, 9, 3, 2, 8, 5, 7, 0, 5, 4, 5
Offset: 0

Views

Author

Daniel Hoyt, Apr 26 2020

Keywords

Examples

			0.2642411176571153568089524596770782651...
		

Crossrefs

Programs

Formula

Equals Integral_{x=0..1} x/e^x dx.
Equals 1 - A135002.
Equals 1/A309419.
Equals -Integral_{x=0..1, y=0..1} x*y/(exp(x*y)*log(x*y)) dx dy. (Apply Theorem 1 or Theorem 2 of Glasser (2019) to the above integral.) - Petros Hadjicostas, Jun 30 2020
From Amiram Eldar, Aug 05 2020: (Start)
Equals Sum_{k>=0} (-1)^k/(k! * (k+2)).
Equals Sum_{k>=1} 1/((2*k)! * (k+1)).
Equals Sum_{k>=1} (-1)^k * k^2 * H(k)/k!, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. (End)

A368270 a(n) = Sum_{k=0..n} 2^(n-k) * k^n.

Original entry on oeis.org

1, 1, 6, 47, 490, 6417, 101178, 1866139, 39425322, 938856053, 24883226698, 726510389607, 23169961642698, 801435579830329, 29884247978965146, 1195036047465095027, 51016725208899539626, 2315820594694418639325, 111384453953719146198762
Offset: 0

Views

Author

Seiichi Manyama, Dec 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*k^n);

Formula

a(n) ~ A309419 * n^n. - Vaclav Kotesovec, Dec 26 2023
Showing 1-4 of 4 results.