cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A316357 Partial sums of A316316.

Original entry on oeis.org

1, 5, 13, 21, 33, 53, 73, 93, 121, 153, 185, 221, 261, 305, 353, 401, 453, 513, 573, 633, 701, 773, 845, 921, 1001, 1085, 1173, 1261, 1353, 1453, 1553, 1653, 1761, 1873, 1985, 2101, 2221, 2345, 2473, 2601, 2733, 2873, 3013, 3153, 3301, 3453, 3605, 3761, 3921
Offset: 0

Views

Author

Rémy Sigrist, Jun 30 2018

Keywords

Crossrefs

Cf. A316316.

Formula

Conjectures from Colin Barker, Dec 13 2018: (Start)
G.f.: (1 + 3*x + 5*x^2 + 2*x^3 + 5*x^4 + 3*x^5 + x^6) / ((1 - x)^3*(1 + x^2)*(1 + x + x^2)).
a(n) = 2*a(n-1) - 2*a(n-2) + 3*a(n-3) - 3*a(n-4) + 2*a(n-5) - 2*a(n-6) + a(n-7) for n>6.
(End)

A316317 Coordination sequence for trivalent node in chamfered version of square grid.

Original entry on oeis.org

1, 3, 6, 11, 14, 15, 20, 25, 26, 29, 34, 37, 40, 43, 46, 51, 54, 55, 60, 65, 66, 69, 74, 77, 80, 83, 86, 91, 94, 95, 100, 105, 106, 109, 114, 117, 120, 123, 126, 131, 134, 135, 140, 145, 146, 149, 154, 157, 160, 163, 166, 171, 174, 175, 180, 185, 186, 189, 194
Offset: 0

Views

Author

N. J. A. Sloane, Jun 29 2018

Keywords

Crossrefs

See A316316 for tetravalent node.
See A250120 for links to thousands of other coordination sequences.
Cf. A316358 (partial sums).

Programs

  • PARI
    See Links section.

Formula

Apparently, a(n + 12) = a(n) + 40 for any n > 0. - Rémy Sigrist, Jun 30 2018
This can surely be proved by the Coloring Book Method, although I have not worked out the details. See A316316 for the corresponding proof for a tetravalent node. - N. J. A. Sloane, Jun 30 2018
G.f. (assuming above conjecture): (1+x)^2*(1+3*x^2+x^4)/((1-x)^2*(1+x+x^2)*(1+x^2)). - Robert Israel, Jul 01 2018
a(n) = (30*n - 9*A056594(n-1) + 6*A102283(n))/9 for n > 0. - Conjectured by Stefano Spezia, Jun 12 2021

Extensions

More terms from Rémy Sigrist, Jun 30 2018

A345118 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a basketweave pattern where all the multiple strands are of unit width, the horizontal ones appearing as 1 X 3 rectangles, while the vertical ones as unit area squares.

Original entry on oeis.org

0, 4, 11, 20, 34, 50, 69, 92, 116, 144, 175, 208, 246, 286, 329, 376, 424, 476, 531, 588, 650, 714, 781, 852, 924, 1000, 1079, 1160, 1246, 1334, 1425, 1520, 1616, 1716, 1819, 1924, 2034, 2146, 2261, 2380, 2500, 2624, 2751, 2880, 3014, 3150, 3289, 3432, 3576, 3724
Offset: 0

Views

Author

Stefano Spezia, Jun 08 2021

Keywords

Examples

			Illustrations for n = 1..8:
        _           _ _          _ _ _
       |_|         |_|_|        |_ _ _|
                   |_ _|        |_|_|_|
                                |_ _ _|
    a(1) = 4     a(2) = 11     a(3) = 20
     _ _ _ _     _ _ _ _ _    _ _ _ _ _ _
    |_ _|_|_|   |_ _|_|_ _|  |_|_|_ _ _|_|
    |_|_ _ _|   |_|_ _ _|_|  |_ _ _|_|_ _|
    |_ _|_|_|   |_ _|_|_ _|  |_|_|_ _ _|_|
    |_|_ _ _|   |_|_ _ _|_|  |_ _ _|_|_ _|
                |_ _|_|_ _|  |_|_|_ _ _|_|
                             |_ _ _|_|_ _|
    a(4) = 34    a(5) = 50     a(6) = 69
      _ _ _ _ _ _ _      _ _ _ _ _ _ _ _
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
     |_ _ _|_|_ _ _|    |_|_ _ _|_|_ _ _|
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
     |_ _ _|_|_ _ _|    |_|_ _ _|_|_ _ _|
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
     |_ _ _|_|_ _ _|    |_|_ _ _|_|_ _ _|
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
                        |_|_ _ _|_|_ _ _|
        a(7) = 92           a(8) = 116
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1,-1,3,-3,1},{0,4,11,20,34,50,69},50]
    a[ n_] := (3*n^2 + 5*n)/2 - (-1)^Floor[n/4]*Boole[Mod[n, 4] == 3]; (* Michael Somos, Jan 25 2024 *)
  • PARI
    concat(0, Vec(x*(4 - x - x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^4)) + O(x^40))) \\ Felix Fröhlich, Jun 09 2021
    
  • PARI
    {a(n) = (3*n^2 + 5*n)/2 - (-1)^(n\4)*(n%4==3)}; /* Michael Somos, Jan 25 2024 */

Formula

O.g.f.: x*(4 - x - x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^4)).
E.g.f.: (exp(x)*x*(8 + 3*x) + (-1)^(1/4)*(sinh((-1)^(1/4)*x) - sin((-1)^(1/4)*x)))/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) - a(n-4) + 3*a(n-5) - 3*a(n-6) + a(n-7) for n > 6.
a(n) = (n*(5 + 3*n) - (1 - (-1)^n)*sin((n-1)*Pi/4))/2.
a(n) = A211014(n/2) - A000035(n)*A056594((n-3)/2).
a(2*n) = A211014(n).
a(k) = A115067(k+1) for k not congruent to 3 mod 4 (A004773).
From Helmut Ruhland, Jan 29 2024: (Start)
For n > 1: a(n) - (2 * A368052(n+2) + A368052(n+3)) * 2 is periodic for n mod 8, i.e. a(n) = (2 * A368052(n+2) + A368052(n+3)) * 2 + f8(n) with
n mod 8 = 0 1 2 3 4 5 6 7
f8(n) = 0 0 -3 -2 -2 -2 1 0 (End)
Showing 1-3 of 3 results.