cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A316358 Partial sums of A316317.

Original entry on oeis.org

1, 4, 10, 21, 35, 50, 70, 95, 121, 150, 184, 221, 261, 304, 350, 401, 455, 510, 570, 635, 701, 770, 844, 921, 1001, 1084, 1170, 1261, 1355, 1450, 1550, 1655, 1761, 1870, 1984, 2101, 2221, 2344, 2470, 2601, 2735, 2870, 3010, 3155, 3301, 3450, 3604, 3761, 3921
Offset: 0

Views

Author

Rémy Sigrist, Jun 30 2018

Keywords

Crossrefs

Cf. A316317.

A316316 Coordination sequence for tetravalent node in chamfered version of square grid.

Original entry on oeis.org

1, 4, 8, 8, 12, 20, 20, 20, 28, 32, 32, 36, 40, 44, 48, 48, 52, 60, 60, 60, 68, 72, 72, 76, 80, 84, 88, 88, 92, 100, 100, 100, 108, 112, 112, 116, 120, 124, 128, 128, 132, 140, 140, 140, 148, 152, 152, 156, 160, 164, 168, 168, 172, 180, 180, 180, 188, 192, 192
Offset: 0

Views

Author

N. J. A. Sloane, Jun 29 2018

Keywords

Crossrefs

See A316317 for trivalent node.
See A250120 for links to thousands of other coordination sequences.
Cf. A316357 (partial sums).

Programs

  • Mathematica
    Join[{1}, LinearRecurrence[{1, -1, 2, -1, 1, -1}, {4, 8, 8, 12, 20, 20}, 100]] (* Jean-François Alcover, Dec 13 2018 *)
  • PARI
    See Links section.

Formula

Apparently, a(n + 12) = a(n) + 40 for any n > 0. - Rémy Sigrist, Jun 30 2018
From N. J. A. Sloane, Jun 30 2018: This conjecture is true.
Theorem: a(n + 12) = a(n) + 40 for any n > 0.
The proof uses the Coloring Book Method described in the Goodman-Strauss - Sloane article. For details see the two links.
From Colin Barker, Dec 13 2018: (Start)
G.f.: (1 + 3*x + 5*x^2 + 2*x^3 + 5*x^4 + 3*x^5 + x^6) / ((1 - x)^2*(1 + x^2)*(1 + x + x^2)).
a(n) = a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) + a(n-5) - a(n-6) for n>6.
(End)
a(n) = (2/9)*(15*n + 9*A056594(n-1) - 6*A102283(n)) for n > 0. - Stefano Spezia, Jun 12 2021

Extensions

More terms from Rémy Sigrist, Jun 30 2018

A345118 a(n) is the sum of the lengths of all the segments used to draw a square of side n representing a basketweave pattern where all the multiple strands are of unit width, the horizontal ones appearing as 1 X 3 rectangles, while the vertical ones as unit area squares.

Original entry on oeis.org

0, 4, 11, 20, 34, 50, 69, 92, 116, 144, 175, 208, 246, 286, 329, 376, 424, 476, 531, 588, 650, 714, 781, 852, 924, 1000, 1079, 1160, 1246, 1334, 1425, 1520, 1616, 1716, 1819, 1924, 2034, 2146, 2261, 2380, 2500, 2624, 2751, 2880, 3014, 3150, 3289, 3432, 3576, 3724
Offset: 0

Views

Author

Stefano Spezia, Jun 08 2021

Keywords

Examples

			Illustrations for n = 1..8:
        _           _ _          _ _ _
       |_|         |_|_|        |_ _ _|
                   |_ _|        |_|_|_|
                                |_ _ _|
    a(1) = 4     a(2) = 11     a(3) = 20
     _ _ _ _     _ _ _ _ _    _ _ _ _ _ _
    |_ _|_|_|   |_ _|_|_ _|  |_|_|_ _ _|_|
    |_|_ _ _|   |_|_ _ _|_|  |_ _ _|_|_ _|
    |_ _|_|_|   |_ _|_|_ _|  |_|_|_ _ _|_|
    |_|_ _ _|   |_|_ _ _|_|  |_ _ _|_|_ _|
                |_ _|_|_ _|  |_|_|_ _ _|_|
                             |_ _ _|_|_ _|
    a(4) = 34    a(5) = 50     a(6) = 69
      _ _ _ _ _ _ _      _ _ _ _ _ _ _ _
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
     |_ _ _|_|_ _ _|    |_|_ _ _|_|_ _ _|
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
     |_ _ _|_|_ _ _|    |_|_ _ _|_|_ _ _|
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
     |_ _ _|_|_ _ _|    |_|_ _ _|_|_ _ _|
     |_|_|_ _ _|_|_|    |_ _|_|_ _ _|_|_|
                        |_|_ _ _|_|_ _ _|
        a(7) = 92           a(8) = 116
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1,-1,3,-3,1},{0,4,11,20,34,50,69},50]
    a[ n_] := (3*n^2 + 5*n)/2 - (-1)^Floor[n/4]*Boole[Mod[n, 4] == 3]; (* Michael Somos, Jan 25 2024 *)
  • PARI
    concat(0, Vec(x*(4 - x - x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^4)) + O(x^40))) \\ Felix Fröhlich, Jun 09 2021
    
  • PARI
    {a(n) = (3*n^2 + 5*n)/2 - (-1)^(n\4)*(n%4==3)}; /* Michael Somos, Jan 25 2024 */

Formula

O.g.f.: x*(4 - x - x^2 + 3*x^3 + x^4)/((1 - x)^3*(1 + x^4)).
E.g.f.: (exp(x)*x*(8 + 3*x) + (-1)^(1/4)*(sinh((-1)^(1/4)*x) - sin((-1)^(1/4)*x)))/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) - a(n-4) + 3*a(n-5) - 3*a(n-6) + a(n-7) for n > 6.
a(n) = (n*(5 + 3*n) - (1 - (-1)^n)*sin((n-1)*Pi/4))/2.
a(n) = A211014(n/2) - A000035(n)*A056594((n-3)/2).
a(2*n) = A211014(n).
a(k) = A115067(k+1) for k not congruent to 3 mod 4 (A004773).
From Helmut Ruhland, Jan 29 2024: (Start)
For n > 1: a(n) - (2 * A368052(n+2) + A368052(n+3)) * 2 is periodic for n mod 8, i.e. a(n) = (2 * A368052(n+2) + A368052(n+3)) * 2 + f8(n) with
n mod 8 = 0 1 2 3 4 5 6 7
f8(n) = 0 0 -3 -2 -2 -2 1 0 (End)
Showing 1-3 of 3 results.